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Abstract 

This research aims to describe the process of student cognition in constructing mathematical conjecture. Many 

researchers have studied this process but without giving a detailed explanation of how students understand the 

information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and 

prove the conjecture. This article discusses the process of student cognition in constructing mathematical 

conjecture from the very beginning of the process. The process is studied through qualitative research involving 

six students from the Mathematics Education Department in the Ganesha University of Education. The process 

of student cognition in constructing mathematical conjecture is grouped into five different stages. The stages 

consist of understanding the problem, exploring the problem, formulating conjecture, justifying conjecture, and 

proving conjecture. In addition, details of the process of the students’ cognition in each stage are also discussed. 

Keywords: Process of Student Cognition, Mathematical Conjecture, qualitative research 

Abstrak 

Penelitian ini bertujuan untuk mendeskripsikan proses kognisi mahasiswa dalam mengonstruksi konjektur 

matematika. Beberapa peneliti mengkaji proses-proses ini tanpa menjelaskan bagaimana siswa memahami 

informasi untuk mengonstruksi konjektur. Para peneliti dalam analisisnya menekankan bagaimana 

mengonstruksi dan membuktikan konjektur. Artikel ini membahas proses kognisi mahasiswa dalam 

mengonstruksi konjektur matematika dari tahap paling awal. Proses tersebut dikaji melalui penelitian kualitatif 

yang melibatkan enam orang mahasiswa pada Jurusan Pendidikan Matematika Universitas Pendidikan 

Ganesha. Proses kognisi mahasiswa dalam mengonstruksi konjektur matematika dikelompokkan ke dalam lima 

tahap yaitu memahami masalah, mengeksplorasi masalah, merumuskan konjektur, menjustifikasi konjektur, 

dan membuktikan konjektur. Proses kognisi mahasiswa pada setiap tahap juga dibahas secara detail. 

Kata kunci: Proses Kognisi Mahasiswa, Konjektur Matematika, Penelitian Kualitatif 

How to Cite: Astawa, I.W.P., Budayasa, I.K., & Juniati, D. (2018). Processes of Student’s Cognition in 

Constructing Mathematical Conjecture. Journal on Mathematics Education, 9(1), 15-26. 

 

Mathematical conjecture is important in mathematics. It plays a vital role in mathematical 

development as formalization of conjecture is good and inevitable for mathematics, as large 

mathematical theories get bigger (Mazur, 1997). Constructing mathematical conjecture involves 

abstraction and generalization processes related to ideas that are initially hypothetical in nature 

(Norton, 2000; Nurhasanah, Kusumah, & Sabandar, 2017). In addition, constructing mathematical 

conjecture and developing proofs are two fundamental aspects of professional mathematical work 

(Alibert & Thomas, 2002) and is the first step in invention (National Council of Teacher of 

Mathematics-NCTM, 2000). 

Beside Mathematics, mathematical conjecture also plays an important role in mathematics 

instruction. NCTM (2000) stated that a program in mathematics instruction should enable all students 

to recognize reasoning and proof as fundamental aspects of mathematics, make and investigate 
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mathematical conjectures, develop and evaluate mathematical arguments and proofs, and select and 

use various types of reasoning and methods of proof. Many researchers such as Boero, Garuti, Lemut, 

and Mariotti (as cited in Manizade & Lundquist, 2009) argue that the student must work through 

internal arguments and sort through solutions that are plausible, similar to ones that a mathematician 

goes through when building a proof during the process of constructing a conjecture. Boero, Garuti, 

Lemut, and Mariotti propose that the process of constructing or building conjecture should be 

emphasized more in mathematics instruction. Besides, constructing mathematical conjecture or 

making a prediction has three benefits in the mathematical classroom since it can reveal students’ 

conception, plays an important role in reasoning, and fosters learning (Lim et al., 2010). Indonesian 

current national curriculum known as Kurikulum 2013, stipulates a scientific approach as the common 

learning approach for all subjects taught in all school levels where building or constructing conjecture 

is one of the activities in reasoning (Kemendikbud, 2013).  

Different researchers give different definitions for mathematical conjecture. Ponte et al. (1998) 

state that a mathematical conjecture is a statement that answers a certain question and is considered to 

be true. Pedemonte (2001) states that a conjecture is a statement that is strictly connected to an 

argument and a set of conceptions where the statement is potentially true because some conceptions 

allow the construction of an argument that justifies it. However, Norton (2004) states that conjectures 

are ideas formed by a person (the learner) that satisfies the following properties: the idea is conscious 

(though not necessarily explicitly stated), uncertain, and the conjecture is concerned with its validity. 

Conjecture in this paper is synthesized from these researchers. Mathematical conjecture is a 

mathematical statement that is hypothetical in nature, where the statement is potentially true and is 

constructed by the students using their own knowledge based on the information provided or the given 

problem.  

The truth or falsity of conjecture is proven through a reasoning process by using logical rules or 

a counter example. Once a conjecture has been proved, then it becomes a valid statement (Pedemonte, 

2001). Proving a conjecture for a mathematician or a novice, such as a student, is generally different 

(Fiallo & Gutierres, 2007). In general, students prove conjecture empirically, narratively, visually, and 

algebraically (Healy & Hoyles, 2000). 

Most research on the process of student cognition in constructing mathematical conjecture 

focuses on how students construct mathematical conjecture. In addition, testing conjecture constructed 

by other students is also a topic of interest (Jiang, 2002). Conjecturing in mathematics teaching and 

the learning process has become an important topic of research in many mathematical fields. 

Constructing mathematical conjecture in Calculus was studied by Morrow (2004), in Geometry by 

Gillis (2005) and Yevdokimov (2006), in Number Theory by Morselli (2006), in Trigonometry by 

Fiallo dan Gutierres (2007), in Statistics by Liu Dan Ho (2008), and in Differential Equation by 

Burtch (2012), to mention a few. 
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Constructing mathematical conjecture involves a lot of processes of cognition. Some of these 

processes have been studied by many researchers (Ponte et al., 1998; Pedemonte, 2001; Norton, 2004; 

Morseli, 2006; Canadas et al., 2007), however, none of these researchers discusses in detail the 

process of cognition from the beginning, rather, they put more focus on the stages of constructing and 

proving the conjecture. In this paper, the process of student cognition in constructing mathematical 

conjecture is discussed in detail from understanding a problem to proving the conjecture. 

Understanding the problem is a crucial stage since students start their planning to find a conjecture 

when they understand the problem. Based on synthesizing the process of cognition in constructing 

mathematical conjecture proposed by Ponte, et.al (1998) and Morseli (2006) and in combination with 

Polya’s (1945) first step in the problem-solving process, we study the process of student cognition in 

constructing mathematical conjecture using five different stages. The stages consist of understanding 

the problem, exploring the problem, formulating the conjecture, justifying the conjecture, and proving 

the conjecture. Table 1 shows the relationship between the process of student cognition studied here 

and that studied by Ponte (1998) and Morseli (2006).  

Table 1. Comparison of steps in constructing mathematical conjecture 

Ponte et al. (1998) Morseli (2006) This paper 

 Proposing questions and 

establishing conjectures 

 Exploring the problem to find out a 

property 

 Understanding the 

problem 

 Exploring the problem 

 Testing and refining the 

conjectures 

 Formulating and communicating 

the conjecture  

 Formulating a 

conjecture 

 Arguing and proving 

the conjectures 

 Exploring the conjecture and 

discovering theoretical arguments 

that validate it 

 Justifying the 

conjecture 

 Constructing a proof that must be 

acceptable to the community of 

mathematicians 

 Proving the conjecture 

 

Table 2 shows the focus of analyses on the process of student cognition in constructing mathematical 

conjecture in the five stages.  

Table 2. Stages in constructing mathematical conjecture and its analysis focus 

No. Stage Focus of analysis 

1 Understanding the 

problem 

What is the process of student cognition in understanding a 

given problem, such as the process of understanding the 

information in the problem? 

2 Exploring the problem What is the process of student cognition in exploring a problem, 

such as translating a problem, manipulating a problem, and 

identifying properties to be constructed as a conjecture? 
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3 Formulating a conjecture What is the process of student cognition in formulating 

conjecture such as types of conjecture, writing a sentence of 

conjecture, and finding a consideration used in writing 

conjecture? 

4 Justifying the conjecture What is the process of student cognition in reasoning and 

generalizing conjecture? 

5 Proving the conjecture What is the process of student cognition in proving conjecture? 

 

METHOD  

A qualitative research method was used in this study. In the academic year 2013/2014, six 

students from the Mathematics Department of Ganesha University of Education were chosen as 

research subjects. The students were chosen based on their mathematical ability and gender. One male 

and one female student were chosen respectively from high, moderate, and low mathematical ability. 

The subjects were coded as S1, S2, S3, S4, S5, and S6. 

Data on the process of cognition was collected from each subject through a task-based 

interview. Each subject was given two mathematics problems from which he or she constructed a 

mathematical conjecture. After constructing mathematical conjectures from the problems, subjects 

were interviewed based on their work. The interview was carried out twice for triangulation purposes 

with the second interview taking place two months after the first. The following problems were used 

in the first interview. 

Problem 1 

Given a parallelogram ABCD with length AB as a unit and length BC as b unit, draw a bisector line 

from each point A, B, C, and D. The bisector line from point A intersects the bisector line from point 

B at point N, from point B and point C at point M, from point C and point D at point L, and from point 

D and point A at point K. Construct a conjecture about the quadrilateral KLMN such as its form, 

position, side length, area, or the like. 

Problem 2 

For any natural number n, the function )(xfn  from R to R is defined as: 



 


else

xx
xf

n

n
,0

]1,0[,
)(  

Construct a conjecture about )(xfn  related to n such as its value, area, sequence, series, or arch 

length. 

The problems used in the second interview were similar to those in the first interview but with 

different point names or variables. The interviews were recorded, transcripted, and then analyzed 

using Miles’ and Huberman’s (1994) method for analyzing qualitative data.  
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RESULT AND DISCUSSION 

 The process of student cognition in constructing mathematical conjecture was explained in five 

different stages, namely understanding the problem, exploring the problem, formulating conjecture, 

justifying conjecture, and proving the conjecture. 

The results of the data analysis for all subjects were abstracted to obtain a general idea about 

the students’ process of cognition in constructing mathematical conjecture. Abstraction as a process of 

cognition for all subjects in constructing mathematical conjecture was done by determining common 

processes for all subjects and eliminating the condition of the problem used. The process of student 

cognition in constructing mathematical conjecture is specified in the five stages mentioned previously. 

The detailed process of cognition in each stage is given in Table 3. 

Table 3. Detailed process of student cognition in constructing mathematical conjecture 

Stage Process of cognition 

Understanding the 

problem 

 Reading the problem to determine what is given and what is asked. 

 Determining what is given in the problem by using his/her own words. 

 Determining what is asked in the problem by using his/her own words. 

Exploring the 

problem 

 Translating or transforming the problem into figures or graphs. 

 Manipulating a problem by using various figures or graphs that reflect 

special cases. 

 Finding invariant properties or patterns by observing changes in the 

figures or graphs. 

 Connecting relevant mathematical knowledge by identifying properties 

or patterns observed in the changes on the figures or graphs.  

 Stipulating the properties or patterns observed to be constructed as 

conjecture.  

Formulating a 

conjecture 

 Remembering the kinds of conjectures obtained from exploring a 

problem to be formulated as conjecture.  

 Writing conjecture by referring to the result from an exploration of a 

problem, mathematical language, and sentence type as a point of 

reference. 

 Believing the formulation of conjectures can be understood by other 

people. 

Justifying the 

conjecture 

 Explaining the reasons for conjecture by using a picture or graph, 

measuring or counting, or a mathematical connection by relating 

relevant mathematical knowledge to its corresponding conjecture. 

 Generalizing the conjecture is done by observing some cases to find a 

property or pattern and then visualize it so it is valid for all other cases. 

 Being aware of the deficiency or mistake underlying the formulation of 

a conjecture. Identifying the deficiency or mistake underlying the 

formulation of conjecture or its reason enables students to correct the 

conjecture. 

Proving the  Being aware that the truth of conjecture must be proved and giving 

expression to this in steps.  
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conjecture  Choosing kinds of proof according to the constructed conjecture. 

 Organizing the proof. Proving the conjecture is done by showing figures 

or graphs, writing mathematical sentences, counting, connecting 

relevant mathematical knowledge, and concluding that the conjecture 

has been proved. 

Some of these processes have been discusses in Canadas, et.al (2007). 

 An interesting finding was obtained in stage 2. To find conjecture, students drew some figures 

or graphs. The following dialogue shows Student S1’s thoughts on finding properties as conjecture for 

Problem 1. 

Researcher : What are you doing after understanding the information 

Student S1 : I drew some parallelograms, ABCD. Here I drew ten parallelograms [All 

parallelograms marked as a, b,..., j drawn by student S1 are given in Figure 1]. I 

drew them with different lengths of a and b. The figures were drawn with the 

same length of a and different length of b. 

Researcher : What is the purpose of drawing? 

Student S1 : I drew a parallelogram and its bisector lines to get their intersection and to get the 

quadrilateral KLMN 

Researcher : Why do you make a lot of figures? 

Student S1 : In order to see the shape, position, and area of the quadrilateral if the length of the 

parallelogram is changed. 

 

(b)

(a)

(c)

(e)

(g)

(i)

(d)

(f)

(h)

(j)

 

Figure 1. Student S1’s work 
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A similar process of cognition is used to find a mathematical conjecture in the exploring problem 

stage for Problem 2. The following dialogue shows Student S2’s thoughts on finding properties as 

conjecture for the problem. 

Researcher : After understanding the information, what are you going to do? 

Student S2 : I drew some graphs as these. [Student S2 points to graphs a, b, c, and d in Figure 2]. 

Researcher : Can you explain them? 

Student S2 : These graphs are families of power function graph with natural numbers as its 

power. For x = 1, the graph is a straight line, for x = 2, the graph is part of a 

parabola, and so on. 

Researcher : Why did you make four graphs? 

Student S2 : For ease of seeing the relationship between them. By drawing some graphs, I can 

see its value for a given x in its support area enclosed by the arch and x-axis, and 

arch length when n changes from 1, 2, 3 and 4. 

 

(a)

(d)

(c)

(b)

 

Figure 2. Student S2’s work 

Another interesting finding in the process of student cognition in constructing mathematical 

conjecture was seen in the proving stage. All subjects are aware that their conjecture must be proved 

in order to make it a true statement. This process of cognition can be inferred from student S3’s 

dialogue 

Researcher : How do you convince someone about your conjecture? 

Student S3 : I will show him the conjecture is true. 

Researcher : How do you show it is true? 

Student S3 : I will give him a proof. 

A similar dialogue was obtained from other subjects in this stage when they were asked how they 

would make someone believe their conjecture. 

 The proof of conjecture organized by students was consistent with Healy and Hoyles’ (2000) 

findings. Almost all students use narrative and visual proof for their conjecture in problem 1, whereas 

they used empirical and algebraic proof for their conjecture in problem 2. An example of narrative 

proof was given by Student S1 as depicted in Figure 3. He made a conjecture about the form of 

KLMN by stating, “The form of KLMN is always rectangle”. To prove his conjecture, he drew a 
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parallelogram, ABCD, and its bisector lines. Then he showed that both KL and NM and KN and LM 

were parallel and its angle is 90 respectively by using the congruence property of the triangle. 

Draw a 

rectangle and 

all its bisector 

lines

Show all 

angle K, L, 

M, and N are 

congruent

Show M is 

right angle

State that 

KLMN is 

rectangle and 

the conjecture 

is proved

 

Figure 3. A proof by Student S1 

An example of visual proof was given by Student S4 as depicted in Figure 4. She made a 

conjecture about the arch length by stating, “If n increases then the arch length increases”. To prove 

her conjecture, she drew a lot of arches and said that from the graphs, the arch length for n=2 is longer 

than for n=1 because the two graphs have two common terminal points but the points are connected 

by a straight line for n=1 and part of a parabola for n=2. A similar reason was used when comparing 

the length of arch for n=2 and n=3.  

Draw some 

graphs in one 

coordinate 

plane

State that 

the 

conjecture 

is proved by 

refering the 

graphs

 

Figure 4. A proof by Student S4 

 An example of algebraic proof was given by student S5 as depicted in Figure 5. She made a 

conjecture about integral value of f(x) by stating, “Integral values of f(x) decreases as n increases”. 

She proved her conjecture by evaluating Cxxdx 
2

2

1
, 

32

3

1
xdxx  , Cxdxx 

43

4

1
 and 
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identified their results as sequence of 
n

1
, 

1

1

n
, 

2

1

n
 since  1,0x . She said the values of the 

sequence were decreasing as n increased. It is known from the interview that she concluded the values 

of the sequence were decreasing by identifying it as a harmonic sequence that she already knew from 

Calculus.  

Integrate the function 

f for n=1, 2, and 3

Make a 

sequence and 

state the 

conjecture is 

prove

 

Figure 5. A Proof by Student S5 

CONCLUSION 

 The process of student cognition in constructing mathematical conjecture can be classified into 

five different stages, namely understanding the problem, exploring the problem, formulating a 

conjecture, justifying the conjecture, and proving the conjecture. The process of student cognition in 

understanding the problem stage are reading the problem, determining what is given and what is 

asked, and restating this with his/her own words. The process of student cognition in exploring the 

problem stage are translating or transforming the problem into figures or graphs, manipulating the 

problem by using various figures or graphs, finding invariant properties or patterns by observing the 

changes in the figures or graphs, stipulating the properties or patterns observed from the figures or 

graphs that would be constructed as conjectures, and connecting relevant mathematical knowledge in 

identifying properties or patterns observed from the changes in the figures or graphs. The process of 

student cognition in formulating the conjecture stage are remembering kinds of conjecture obtained 

from exploring the problem to be formulated as conjecture, writing down the conjecture by referring 

to the result from exploring the problem and by using language and sentence types as points of 

reference in writing the conjecture, and believing that the formulation of conjectures can be 

understood by other people. The process of cognition in justifying the conjecture stage explains the 

reasons for the conjecture, generalizing the conjecture, and being aware of the deficiency or mistake 

underlying the formulation of conjectures or their reasons. The process of cognition in the proving 

conjecture stage are being aware that the truth of conjecture must be proved, choosing the type of 

proof according to the constructed conjecture, and organizing the proof. Proving the conjecture is 

done by showing figures or graphs, writing mathematical sentences, doing some counting or algebra 

manipulation, connecting relevant mathematical knowledge, and concluding that the conjecture had 

been proved. 
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