Pengembangan Superkapasitor Bank dengan Kontroler ESP-32 Berbasis IoT sebagai Alat Penyimpan Energi

Djukarna Djukarna, Murni Murni

Abstract


The purpose of this study is to develop an electrical energy storage device using a supercapacitor that is equipped with a dynamic voltage balancing system and an IoT-based controller that can send data on the condition of the bank supercapacitor to users via a wireless network. This research is a type of research and product development with a 4D development model. The process of design, manufacture, and testing is carried out in the laboratory using a dummy voltage source. The data processed in the study are the total voltage of the supercapacitor bank, the maximum voltage of each individual supercapacitor in the supercapacitor bank, the strength of the current supplied to the supercapacitor and the time required for the charging and emptying of the supercapacitor. The instruments used to create bank supercapacitors are capacitors, resistors, ESP-32 controllers, Zener diodes, and voltage sources. The research data was obtained using the Arduino IDE application and then plotted into a graph. Data processing will result in the performance of the bank supercapacitor which includes the total capacity of the supercapacitor, the maximum current that can be supplied, and the most ideal conditions for the charging and discharging of the supercapacitor bank. The result of this study is the development of a supercapacitor bank as an energy storage tool that has been equipped with a dynamic voltage balancing system and an IoT-based controller that can send data on the condition of the supercapacitor bank to users via a wireless network. This supercapacitor bank can be used instead of batteries that can be used as a voltage charger on electric bicycles, power banks, and non-battery electrical energy stores.


Keywords


ESP-32 Controller; Energi Storage, Internet of Things (IoT); Supercapacitor Bank

Full Text:

PDF

References


Chad Abbey & Geza Joos. (2017). Supercapacitor Energy Storage for Wind Energy Application. IEEE Transaction On Industry Applications. IEEE Transactions on Industry Applications , 43(3). doi:10.1109/TIA.2007.895768

Chao, R. (2017, November 17). The Fundamental of Supercapasitor Balancing. Retrieved from https://www.eeworldonline.com/the-fundamentals-of-supercapacitor-balancing/

Chukwubuikem Chukwuka & Komla Folly. (2012). Batteries and super-capacitors. Power Engineering Society Conference and Exposition in Africa (PowerAfrica). South Africa. doi:10.1109/PowerAfrica.2012.6498634

Dirk Linzen, S. B. (2015). Analysis and Evaluation of Charge-Balancing Circuits on Performance, Reliability, and Lifetime of Supercapacitor Systems. IEEE Transactions on Industry Applications, 41(5), 1135-1141. doi:10.1109/TIA.2005.853375

Electronics, R. (2018, Januari 31). How to Charge Supercapasitor Banks for Energy Storage. Retrieved from Renesas.com: https://www.renesas.com/sg/en/document/whp/how-charge-supercapacitor-banks-energy-storage

Joshi P.S & Sutrave D.S. (2019). Supercapasitor: Basics and Overview. Journal of Information and Computational Science, 9(12), 609 - 618.

Lystianingrum, V. (2019). Superkapasitor sebagai Alternatif Penyimpan Energi untuk Bus Listrik di Indonesia: Potensi dan Tantangan. Simposium Nasional Alumni BPP-LN Dikti. Surabaya.

Nurhasni, F. F. (2012). Penyerapan Ion Aluminium dan Besi dalam Larutan Sodium Silikat Menggunakan Karbon Aktif. Jurnal Valensi, 2(4), 516-525. doi:10.15408/jkv.v2i4.269

Prashant Singh B.T., B. B. (2019). Extensive review on Supercapacitor cell voltage balancing. 1st International Conference on Sustainable Energy and Future Electric Transportation (SeFet 2019). 87, p. 01010. Thailand: E3S Web Of Conference. doi:https://doi.org/10.1051/e3sconf/20198701010

Riyanto, A. (2014). Superkapasitor sebagai Piranti Penyimpan Energi Listrik Masa Depan. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 3(2). Retrieved from http://ejournal.radenintan.ac.id/index.php/al-biruni/article/view/73/66

Sugiyono. (2010). Metode Penelitian Pendidikan. Bandung: Alfabeta.

Trianto. (2014). Mendesain Model Pembelajaran Inovatif, Progresif, dan Kontekstual. Jakarta: Prenadamedia group.

Uno, M. (2014). Supercapacitor-Based Electrical Energy Storage System. Energy Storage in the Emerging Era of Smart Grids. doi:10.5772/18667

Vladimir Lazarov, B. F. (2010). Application of Supercapacitors in Hybrid Systems. Proceedings of the Technical University of Sofia, 60. Bulgaria.

Yuliia Kozhushko, Tetiana Ryzhakova, Oleksandr Bondarenko. (2017). Supercapacitor Battery Charger with Voltage Equalizing. Me?unarodna konferencija o obnovljivim izvorima elektri?ne energije, (pp. 127-134). doi:10.24094/mkoiee.017.1.5.127




DOI: https://doi.org/10.36706/jipf.v10i1.19570

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Inovasi dan Pembelajaran Fisika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Inovasi dan Pembelajaran Fisika
Program Sarjana Pendidikan Fisika
Fakultas Keguruan dan Ilmu Pendidikan
Universitas Sriwijaya
Jl. Raya Palembang-Prabumulih KM 32 Indralaya
Ogan Ilir, Indonesia
email: jipf@fkip.unsri.ac.id.

p-ISSN: 2355-7109
e-ISSN : 2657-0971

Jurnal Inovasi dan Pembelajaran Fisika is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

 

Indexed in:

 

Recommended Tools :

  

 


Flag CounterView My Stats