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Abstract 
Concern has been expressed that many commencing undergraduate mathematics students have 
mastered skills without conceptual understanding. A pilot study carried out at a leading 
Australian university indicates that a significant number of students, with high tertiary entrance 
ranks, have very limited understanding of the concept of function, despite the emphasis it 
receives in the secondary mathematics curriculum. Whilst most students were familiar with 
families of functions, many were unable to give an appropriate definition or recognize whether 
a given graph or rule represents a function; and could not make correct connections between 
function graphs and tables of values. 
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Abstrak 
Keprihatinan telah diungkapkan bahwa mulai banyak mahasiswa sarjana matematika telah 
menguasai keterampilan tanpa pemahaman konseptual. Sebuah penelitian yang dilakukan pada 
sebuah universitas terkemuka di Australia menunjukkan bahwa sejumlah besar mahasiswa, 
dengan peringkat masuk yang tergolong tinggi, memiliki pemahaman yang sangat terbatas 
terhadap konsep fungsi, meskipun penekanannya pada materi yang diterima mereka dalam 
kurikulum matematika sekolah menengah. Sementara sebagian besar mahasiswa yang akrab 
dengan keluarga fungsi, banyak yang tidak dapat memberikan definisi yang tepat atau 
mengenali apakah grafik yang diberikan atau aturan merupakan suatu fungsi; dan tidak bisa 
membuat hubungan yang benar antara fungsi grafik dan tabel nilai. 

 
Kata Kunci: Aljabar, Fungsi, Matematika Sekolah Menengah, Mahasiswa Matematika 

 
 
The notion of a function has been seen as a unifying concept both within mathematics and also 

between mathematics and the real world. It is widely agreed that a strong understanding of the concept 

of function is vital for students studying calculus.  In later years of secondary schooling, much of the 

mathematics curriculum is devoted to the study of calculus. It is the function that is the fundamental 

object in calculus, and not just any function, but a continuous function, so to really understand 

calculus, students need a sound understanding of functions. Research (see below) has shown that an 

understanding of function develops over an extended period of time and that in the past many 

undergraduate students demonstrated poorly developed notions of function. Much of this research was 

conducted in the early 1990’s; since then two decades have passed but has the situation changed? The 

research reported in this paper explores the conceptual understanding of functions held by current 

students from a leading Australian university.  
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In this section we will look at the history of the term ‘function’ and its definition as it is used in 

mathematics. This review will also cover research on students’ misconceptions regarding functions 

and various recommended pedagogical strategies including an emphasis on multiple representations. 

History and Definition 

The concept of function in mathematics dates back to at least the seventeenth century and has 

evolved considerably over that time. In 1692, Leibniz used the term ‘function’ with respect to aspects 

of curves such as the gradient at a point. Early in the 18th century Bernoulli used ‘function’ to describe 

an expression made up of a variable and some constants: “One calls here Function of a variable a 

quantity composed in any manner whatever of this variable and of constants” (cited in Kleiner, 1989, 

p. 284). Kleiner notes that it was Euler who brought the concept to prominence by treating calculus as 

a formal theory of functions. By 1748, Euler had refined his thinking on functions and wrote: 

 

If … some quantities depend on others in such a way that if the latter are changed the 

former undergo changes themselves then the former quantities are called functions of the 

latter quantities. This is a very comprehensive notion and comprises in itself all the 

modes through which one quantity can be determined by others. If, therefore, x  denotes 

a variable quantity then all the quantities which depend on x  in any manner whatever or 

are determined by it are called its function (cited in Kleiner, 1989, p. 288).  

 

By the 19th century, new concepts of ‘function’ were developing, leading to Dirichlet’s 1837 

definition: 

 

y  is a function of a variable x , defined on the interval a x b  , if to every value of the 

variable x  in this interval there corresponds a definite value of the variable y . Also, it is 

irrelevant in what way this correspondence is established (cited in Kleiner, 1989, p. 291). 

 

By the early 20th century, discussions about the precise meaning of function and variable 

resulted in 1939 to Bourbaki’s formal ordered pairs definition of function: a relation between ordered 

pairs in which every first element has a unique second element.  

 

Let E  and F  be two sets, which may or may not be distinct. A relation between a 

variable element x  of E  and a variable element y  of F  is called a functional relation 

in y  if, for all x E , there exists a unique y F which is in the given relation with x . 

We give the name of function to the operation which in this way associates with every 

element x E  the element y F  which is in the given relation with x  (cited in Kleiner, 

1989, p. 299). 
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This is often referred to as the Bourbaki definition or the Dirichlet-Bourbaki definition. A 

typical current Australian school textbook definition would be worded: “We define a function as a 

relation between two sets, called the domain and range, such that each element in the domain 

corresponds to exactly one element in the range.” 

Incomplete and Incorrect Understandings of Functions and Function Notation  

Eisenberg (1992) notes that the mathematics education literature on functions can be divided 

broadly into two groups of studies: those which promote the importance of teaching functions and 

present specific pedagogical approaches, and those that focus on the difficulties students encounter in 

understanding functions. 

As noted by Kieran (1993), “in the process of generalizing the function definition, 

mathematicians have banished the rule that was the essential idea of the function” (p. 191). Perhaps 

not surprisingly, then, the difficulty that students have with the function concept may be due in part to 

a mismatch between the definition of function that is presented to them and the nature of the tasks and 

applications they are required to complete:  

 

The concept of function can be defined in a formal symbolic way, almost without using 

words… But at the very moment the notion is applied in a context, mathematical or 

mathematized, informal language is being used and this informal language brings about 

meanings that transcend the mere logic of the definition (Sierpinska, 1992, p. 29).  

 

Vinner and Dreyfus (1989) note that although a version of the Bourbaki definition is frequently 

presented in textbooks and curricula, “the examples used to illustrate and work with the concept are 

usually, sometimes exclusively, functions whose rule of correspondence is given by a formula.” 

Consequently, when asked to give a definition of function, students would be likely to give a 

Bourbaki-type definition, but their work on identification or construction tasks might be based on the 

formula conception. 

Vinner and Dreyfus (1989) suggest that students do not necessarily use the definition when 

deciding whether a given mathematical object is a function, deciding instead on the basis of a ‘concept 

image’, that is, the set of all the mental pictures associated in the student’s mind as a result of his or 

her experience with examples and non-examples of functions. Vinner and Dreyfus note that “the set of 

mathematical objects considered by the student to be examples of the concept is not necessarily the 

same as the set of mathematical objects determined by the definition” (p. 356).  

Tall and Bakar (1991) report on a study with twenty eight students (aged 16-17) who had 

studied the notion of a function during the previous year and had used functions in calculus, but with 

little emphasis on aspects such as domain and range. The students were set the task: “Explain in a 

sentence or so what you think a function is. If you can give a definition of a function then do so” (p. 

105). Tall and Bakar note that none of the students gave satisfactory definitions, but all gave 
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explanations, including the following: 

• a function is like an equation which has variable inputs, processes the inputted number and gives 

an output. 

• a process that numbers go through, treating them all the same to get an answer. 

• an order which plots a curve or straight line on a graph. 

• a term which will produce a sequence of numbers, when a random set of numbers is fed into the 

term. 

• a series of calculations to determine a final answer, to which you have submitted a digit. 

• a set of instructions that you can put numbers through. (p. 105) 

 

Tall and Bakar note that most of the students 

expressed some idea of the process aspect of function – taking some kind of input and 

carrying out some procedure to produce an output – but no one mentioned that this only 

applies to a certain domain of inputs, or that it takes a range of values. Many used 

technical mathematical words, such as term, sequence, series, set, in an everyday sense, 

intimating potential difficulties for both students and teachers in transferring 

mathematical knowledge (p. 105). 

 

Tall and Bakar (1991) claim that even though curriculum documents include the definition of 

the function concept, the definition “is not stressed and proves to be inoperative, with student 

understanding of the concept reliant on properties of familiar prototype examples” (p. 212) with the 

result that students have many misconceptions. Tall and Bakar note, for example, that 44% of a 

sample of 109 students starting a university mathematics course considered a constant function is not a 

function in at least one of its graphical or algebraic forms, usually because y is independent of the 

value of x . Furthermore, 62% of the students thought that a circle is a function. Blume and Heckman 

(1997) comment that despite the recognised importance of multiple representations in secondary 

school mathematics, many students do not understand the connections among these representations.  

Carlson (1998) undertook a study which included high achieving students who had either just 

completed college algebra or, at least, some calculus subjects. The college algebra course had included 

an introduction to functions. Carlson found that many of the students did not understand function 

notation, had difficulty understanding the role of the independent and dependent variables in a given 

functional relationship, could not explain what is meant by expressing one quantity as a function of 

another, and were unable to speak the language of functions. Students reported that they replaced 

understanding with memorisation in the absence of time for reflecting and questioning.  

Oehrtman, Carlson and Thompson (2008), referring to Carlson’s 1998 study, reported that many 

students believed that constant functions (e.g., 5y  ) were not functions because they do not vary. 

When asked to give an example of a function all of whose output values are equal to each other, “only 
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7% of A-students in college algebra could produce a correct example, and 25% of A-students in 

second semester calculus produced x = y as an example.” (p. 151). Oehrtman, Carlson and Thompson 

also found that many of these students were unable to correctly calculate  f x a  given a function 

 f x , with 43% of the college algebra students attempting to find  f x a  by adding a  onto the 

end of the expression for  f x rather than substituting x a  into the function. When asked to 

explain their thinking, students typically justified their answers in terms of a memorised procedure 

rather than thinking of x a  as an input to the function. Oehrtman, Carlson and Thompson also note 

that students typically memorise without understanding that the graph of a function g  given by 

   g x f x a   is shifted to the left of the graph of f  “but asking them to discover or interpret this 

statement as meaning ‘the output of g  at every x  is the same as the output of f  at every x a ’ will 

give them a more powerful way to understand this idea” (p. 161).  

Oehrtman, Carlson and Thompson (2008) found that students often confused the visual 

attributes of a real-world situation with similar attributes of the graph of a function that models the 

situation. School mathematics tends to focus on special features of graphs, for example, turning points, 

points of inflection and gradient. Function models of real-world situations sometimes exhibit similar 

features, for example, a road going up a hill, a curve in a road, or a vehicle slowing down. Oehrtman, 

Carlson and Thompson note that the superficial similarity of these features of graphs and the real-

world setting often leads to confusion, even for students with a strong understanding of functions. 

They assert that  

 

students are thinking of the graph of a function as a picture of a physical situation rather 

than as a mapping from a set of input values to a set of output values. Developing an 

understanding of function in such real-world situations that model dynamic change is an 

important bridge for success in advanced mathematics (p. 154). 

 

Norman (1992) considers that teachers’ mathematical knowledge and mathematical pedagogical 

knowledge is crucial to an understanding of the learning and teaching of the function concept. 

Reporting on a study with ten teachers working towards a master’s degree in mathematics education, 

Norman notes that teachers, even those who were “more mathematically experienced”, exhibited gaps 

in their understanding of function. Most of the teachers could provide an informal description of 

function that would be useful for explaining to someone who did not understand the concept. 

However, the formal definition of function caused considerable confusion, as demonstrated by the 

response of one teacher: 
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It’s each member of the domain matches with a unique element of the range … or vice 

versa … So I don’t ever use that; I don’t like it. No, it doesn’t make sense to me … Each 

member of the domain does not match with a unique member of the range [referring to 

the set {(1, 3), (2, 3), (3, 3)}]; but it does vice versa, so each member of the range 

matches with a unique member of the domain (p. 224). 

 

In general these teachers had not built strong connections between their informal definitions of 

function and what they viewed as the formal mathematical definition. They could readily identify 

standard examples of functions, “but in more complex situations sometimes rely on inappropriate (and 

incorrect) tests of functionality” (p. 229). Norman notes that for some of the teachers, image concepts 

were “almost exclusively related to expressions of the form  y f x . One teacher, for example, 

when asked if x  were a function of y  for the equation 24x y , replied: “No. y  is a function of x . 

Except in this case it’s not one.” (p. 225). 

Cooney and Wilson (1993) note that there are many aspects of teachers’ thinking about 

functions that warrant research – for example, do teachers view functions as graphs, rules, algebraic 

expressions, or sets of ordered pairs; how do their conceptions influence their teaching of functions; do 

they regard functions as a unifying concept within mathematics? After observing a teacher ask 

students to explain what is meant by a linear function then accept an example rather than a definition, 

Cooney and Wilson question whether the teacher was aware of the difference in cognitive demand 

when asking for a definition or an example; whether she was aware of the range of representations that 

could have been used to assess the students’ understanding of the concept of linear functions; to what 

extent her understanding of functions was contributing to how she made decisions during the lesson. 

Carlson (1998) suggests that  

 

curriculum developers underestimate the complexity of acquiring an understanding of the 

essential components of the function concept… and that current curricula provide little 

opportunity for developing the ability to: interpret and represent covariant aspects of 

functions, understand and interpret the language of functions, interpret information from 

dynamic functional events (p. 142). 

 

She asserts that “the pace at which content is presented, the context in which it is presented as 

well as the types of activities in which we engage students have an enormous impact on what students 

know and what they can do” (p. 143). Clement (2001) stresses the need for “developing a concept 

image that is well aligned with the mathematical definition” (p. 748).  
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Suggestions for Appropriate Pedagogy 

Vinner and Dreyfus (1989) assert that 

 

…at least a doubt should be raised whether the Dirichlet-Bourbaki approach to the 

function concept should be taught in courses where it is not intensively needed. If 

discontinuous functions, functions with split domains, functions with exceptional points, 

or other strange functions are needed, we think that they should be introduced as cases 

extending the students’ previous experience. The formal definition should be only a 

conclusion of the various examples introduced to the students (p. 365). 

 

Sierpinska (1992) asserts that “the pedagogical conclusion… is that an early introduction of the 

general definition of function does not make sense; it will be either ignored or misunderstood.” (p. 48). 

For students to understand the concept of function, Sierpinska suggests that “the notion of function can 

be regarded as a result of human endeavor to come to terms with changes observed and experienced in 

the surrounding world” (p. 31) and that introducing students to the concept of functions as models of 

relationships may overcome some of the difficulties associated with the concept.  

Knuth (2000) claims that students who develop a deep understanding of the notion of function 

know which representation is most appropriate for use in different contexts and are able to move 

backwards and forwards between different representations. Dreyfus (2002) asserts that to be 

successful in mathematics, students need rich mental representations of concepts, that is, many linked 

aspects of the concept. He observes that “poor mental images of the function concept … are typical 

among beginning college students, who think only in terms of formulas when dealing with functions” 

(p. 32). 

The use of CAS and graphics calculators to enhance student learning by carefully linking 

representations has been a common theme in recent literature (see for example Zbeik et al., 2007). 

Conjectures that the use of multiple representations is key to promoting students’ understanding of 

functions is supported by research data (see for example, Kieran & Yerushalmy, 2004). Linking 

representations and gaining ‘representational fluency’, where students can interpret mathematical 

ideas in distinct representations, then move between them, supports the development of robust 

conceptual schema. Oehrtman, Carlson and Thompson (2008) point out that a strong procedural 

emphasis, where students think about functions only in terms of symbolic manipulations and 

procedural techniques, has not been effective for building a deep conceptual understanding of 

functions. It seems that such approaches are still prevalent despite the advice based on earlier research. 

Our research examines the understanding of functions of students who have met the 

requirements to be permitted to study first year University mathematics. It therefore will provide some 

insights into the efficacy of their school mathematics studies in establishing a sound understanding of 

the concept of a function. 
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METHOD 

This paper reports on the results of a mathematics quiz (referred to as ‘quiz’) that was used with 

a cohort of first-year undergraduate mathematics students as part of a pilot research study at an 

Australian university. All of the students had completed at least one mathematics subject that included 

calculus in their final year of schooling. The quiz was delivered online and was made available to the 

students soon after the start of their first semester, so that students’ current mathematical 

understanding and skill level varied little from the level they had reached by the end of secondary 

school. Of the students surveyed, the vast majority were enrolled in degree programs with entry levels 

indicating that students were in the top 8% of achievement in their final year secondary school cohort, 

although no specific information about their mathematics score was collected. At the time of the quiz, 

students were enrolled in first year mathematics or statistics subjects. The mathematics subjects aimed 

to extend the students’ knowledge of calculus and required students to understand the concept of 

function. Students’ attention was drawn to the quiz through emails and verbally by their lecturers. The 

quiz was accessed through the university’s Learning Management System. Students’ participation in 

this research study was entirely voluntary and the quiz did not form a part of any subject they were 

studying. The quiz was limited on time (35 minutes) and students were given one attempt only.  

Of the approximate 2000 students who could have accessed the quiz, 427 students answered the 

quiz but not all of the students answered every question. The responses of the 383 students who 

attempted most of the quiz were analysed. The quiz comprised 16 questions, designed to probe 

students’ understanding of pronumerals (not reported in this paper) and functions. After the 

completion of semester 1, a sample of the quiz respondents who had displayed misconceptions on at 

least six of the sixteen quiz questions was selected. The sample students were invited to participate in 

individual face-to-face interviews. During the interview each student was presented with questions 

similar to the quiz questions which they had answered incorrectly and then asked to explain their 

thinking. Questions 1 to 11 of the quiz related specifically to the concept of function; this paper 

focuses on the students’ responses to these questions. The questions were particularly designed to 

probe students’ abilities in: 

• describing what a function is (question 1); 

• identifying functions from rules or statements (question 2) and from graphs (question 11); 

• identifying types of functions from graphs (questions 5, 6, 7) and  from tables (question 8, 9, 10); 

• substituting numerical and algebraic values for a given function (question 3).  

 

For clarity, the questions will not necessarily be presented in order but rather thematically1. 

                                                
1 Note that when numbering the questions an error has been produced and a question numbered 4 does not exist. 
For consistency with the original quiz numbering, we will not renumber here questions 4 to 11. There are in total 
ten questions, numbered 1 to 11 with question number 4 missing.  
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RESULTS AND DISCUSSION 

Question 1 

Question 1 is an open ended question, addressing students’ worded descriptions of function: “Explain, 

in plain English, what a function is.” 

Approximately ninety-five percent of the 383 students answered Question 1. Only 228 of the 383 

students (59.5%), that is 62.8% of those who answered, were able to give one or more valid 

descriptors of a function, but most explanations represented incomplete or incorrect concepts, 

supporting observations by Tall and Bakar (1991). In Table 1, the valid descriptors are categorised as: 

rule connecting dependent variable and independent variable; unique value of dependent variable for 

each value of the independent variable; vertical line test (a vertical line drawn anywhere on the graph 

of a function crosses the graph only once); mapping between values of independent and dependent 

variable; mapping with one-to-one or many-to-one correspondence; graph of relationship between 

independent and dependent variables.  
 

Table 1. Responses to Question 1 (in Categories) 

Concepts present in students’ 

responses 

Percentage of all quiz 

respondents who included this 

element. 

n = 383 

Percentage of Q1 respondents 

who included this element. 

n = 363 

Rule 51 54 

Unique y-value for each x-value 19 21 

Vertical line test 4 4 

Mapping  4 5 

One-to-one or many-to-one 5 5 

Graph  6 7 

At least one valid descriptor 60 63 

Not answered 5  

 

The wide diversity in the students’ responses is illustrated by the following statements:  

• A function is a rule which relates the values of one variable quantity to the values of another 

variable quantity, and does so in such a way that the value of the second variable quantity is 

uniquely determined by the value of the first variable quantity.   

• It is an equation that has one y  value for every x value. If you draw a line through the plot of the 

graph, the line will only pass through the plot once. 

• A mapping, usually in the form of a rule, from one set to another, with the property that each 

input has a unique output. 

•  A graph that passes the vertical line test.  
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•  f x . 

• It is like a machine that has an input and an output. And the output is related somehow to the 

input. 

• Anything that takes an input and spits out a single output. Example: an apple juicer. 

• It is a mechanism that alters numbers put in to equal different numbers when they come out. 

• A function is a one-to-many relation. 

• Something with the ability to do something else. 

• Something with x in it. 

• Describe the real world in mathematical terms. 

 

Clearly, whilst some students had a well-developed working understanding of the function 

concept, others had tried to memorise definitions, often unsuccessfully as in the case of “a function is 

a one-to-many relation”. Still others displayed naïve conceptual understanding influenced by the 

number-machine/food-processor analogy.  

Question 2 

In Question 2 students were presented with six descriptors and asked to indicate which ones defined 

functions (given in items 2a, 2b, 2c and 2e):  

2a. 2( ) 2f x x   where x ∈ ℝ 

2b.  f x ax b    where x, a, b, c ∈ ℝ 

 

2c. ݂(ݔ) = ቐ
ଶݔ ݔ  ݂݅     ≤ 0
2      ݂݅  0 < ݔ ≤ ݔ ݈݈ܽ ݎ݋݂       1 ∈  ℝ
ݔ ݂݅    ݔ2 > 1

 

2d. ݂(ݔ) = ቐ
ݔ2 + ݔ ݂݅         1 < 2 
∋ ݔ ݈݈ܽ ݎ݋݂                                         ℝ
ݔ5− + ݔ ݂݅     3 > 1

 

2e. Let f  be a function whose rule  f x  is the area of a circle with circumference x 

2f. Let f  be a function whose rule  f x  is the area of a rectangle with perimeter x 

 

For functions described in items 2a, 2b, 2c and 2e, the rationale was to see whether students 

would recognise functions in a range of different written and symbolic representations, from familiar 

prototypes of functions (item 2a) to hybrid functions with more than a single rule descriptor (item 2c) 

or worded descriptions (item 2e). The later type of representation is not often seen or worked on at 

secondary level, yet it is frequently encountered at the tertiary level and students often struggle in 

recognising a function when it is given in a format for which one cannot immediately determine a rule.   
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All 383 students completed Question 2 but only 23 students (7%) responded correctly to all six 

items. Table 2 shows the percentages of 383 students who selected each of the rules/statements as 

defining functions. 
 

Table 2. Question 2: Percentage of Students Selecting Each Descriptor 

Rule or 

statement 

% of students who 

marked as function 

( 383n  ) 

% of correct 

responses (n = 383) 

2a* 89  89 

2b* 85  85 

2c* 75  75 

2d 56  44 

2e* 50  50 

2f 39  61 

* indicates function 

 

The surprising number of students who did not believe that rules given in items 2a and 2b 

defined functions (11% and 15% respectively) were confused perhaps by inclusion of the surd and 

pronumeral parameters. For the hybrid rules in items 2c and 2d, 73 students (19%) believed that 

neither the rule in item 2c nor item 2d represented functions, and although these students in fact 

responded correctly for item 2d, their reasoning was probably incorrect. Despite their experience of 

hybrid functions in senior secondary mathematics, the concept of a hybrid function apparently ran 

counter to their concept image of a function being represented by a recognisable rule, for example, a 

linear or a quadratic rule. Although a correct response to item 2c was given by 289 students (75%), 

only 96 of these students recognised that the rule in item 2d did not define a function, with many 

students failing to make the connection between the hybrid set of rules and the function property that 

each value of the independent variable must correspond to a unique value of the dependent variable.  

For the verbal statements in item 2e and 2f 177 students (46.2%) apparently believed that 

neither the statement in item 2e nor that in 2f represented a function. For these students, very likely the 

concept of function embodied an algebraic rule or a graph. Whilst these students were in fact correct 

for item 2f, it is likely that their reasoning was incorrect. Only 56 students (14.6%) correctly indicated 

that the statement in item 2e defined a function but the statement in item 2f did not. These students 

understood that a function could be defined in words but also recognised that the rectangle area did not 

give rise to a unique value of the dependent variable for each value of the independent variable.  

Question 11 

Question 11 is discussed next as it again required students to identify functions, but this time graphical 

representations rather than rules were provided.  
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“Among the following graphs, which one corresponds to a function? (Choose as many as they 

apply).” 

 

11a 11b 11c 

 
 

 

 

All 383 students in the study answered Question 11 but correct responses to all three graphs 

were given by only 160 students (41.8%). Surprisingly, almost one third of students believed that 

graph in item 11b represented a function (see Table 3).  
 

Table 3. Question 11: Percentage of Students Selecting Each Graph as Graph of Functions 

% of students  

( 383n  ) 

% of correct 

responses 

11a* 60  60 

11b 33  67 

11c* 79  79 

*indicates function 

 

The hybrid function described by the rule in item 2c is represented by the graph in item 11a. Of 

the 383 students, only 207 students (54%) were consistent in identifying both representations as a 

function, with 70 students (18.3%) believing that neither were functions (see Table 4). A further 

21.4% indicated that only the rule represented a function and 6.3% indicated that only the graph was a 

function.  
 

Table 4. Number of Students with Correct Responses to Items 2c and 11a 

Rule 2c and 

graph 11a 

Rule 2c but not 

graph 11a 

Graph 11a but not 

rule 2c 

Neither 

207 82 24 70 
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The quadratic function described by the rule in item 2a is represented by the graph in item 11c. 

Two hundred and eighty-three (73.9%) of the 383 students correctly indicated that both rule 2a and 

graph 11c represented functions (see Table 5). Only 22 students (5.7%) believed that neither were 

functions. However, 20 students who identified the rule in item 2a as a function did not identify the 

graph in item 11c as a function. A further 58 students identified the graph, but not the corresponding 

rule, as a function.  
 

Table 5. Number of Students with Correct Responses to Items 2a and 11c 

Rule 2a and 

graph 11c 

Rule 2a but not 

graph 11c 

Graph 11c but not 

rule 2a 

Neither 

283 20 58 22 

 

Of the 14 students who referred to the ‘vertical line’ test in Question 1, eleven responded 

correctly to all three graphs, but the other three did not identify the graph in item 11a as a function. Of 

the 75 students who referred in Question 1 to ‘a unique y-value for each x-value’, 64 students 

responded correctly to the graph in item 11b, 65 students responded correctly to the graph in item 11c, 

with five students responding incorrectly to both items 11b and 11c. 

Only 17 students (4.4%) responded correctly to all of the six rules in Question 2 as well as to 

the three graphs in Question 11. In their final year of school, 11 of these students had completed two 

mathematics subjects that included calculus, including the highest level mathematics subject. 

However, only 5 of the 11 students referred to ‘a unique y-value for each x-value’ in their explanation 

of function in Question 1. Their explanations, whilst not including naïve number machine 

explanations, still showed wide diversity, as seen by the following explanations from two of the 

students: 

• Functions are equations in which there is either one x-value for each y-value (one-to-one 

functions) or multiple x-values for one y-value (many-to-one functions). If there are multiple y-

values for one x-value then it is not a function. 

• A number that changes as a result of some variable changing. For example, your position could 

change depending on what the time is. 
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Question 3 

This question is about gauging students’ substitution skills for the function   2 2f x x x    where 

x ∈ ℝ. 

“Let f  be a function such that, for all real x,   2 2f x x x   . 

a What is the value of  1f ? 

b Find  f a . Find  f a . 

c Find        22 , , 1 ,f x f x f x f x  . 

d What is the coefficient of 2x  in   f f x ? Select one of the following: 

 0 1 2 3 4 

 

Table 6 shows the percentage of students who answered each part of Question 3 and the 

percentage who answered correctly. 
 

Table 6. Number of Students Responding Correctly to Question 3 

  

Percentage of 

students correct 

(n = 383) 

% of those who 

answered who 

were correct 

(338≤n≤366) 

3a  1f  93 98 

3b.1  f a  92 96 

3b.2  f a  86 91 

3c.1  2f x  80 86 

3c.2  f x  83 90 

3c.3  1f x  68 75 

3c.4  2f x  82 91 

3d Coefficient of 
2x  in 

  f f x  

47 53 
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Table 7 shows the number of different answers and the frequency of the most common incorrect 

answers for items 3a, 3b and 3c. 
 

Table 7. Number of Unique Answers and Most Common Incorrect Answers for Question 3 

Item Number of unique 

answers 

Most common incorrect answers with  

number of students in brackets 

3a 6 0  (4)   

3b.1 13 2 3a a   (2)   

3b.2 22 2 2a a     (6) 2 2a a    (5)  

3c.1 27 22 2 2x x    (9) 24 2 2x x    (4) 24x   (4) 

3c.2 22 2 2x x     (8) 2 2x x    (4) 2 2x x    (3) 

3c.3 29 2 3x x    (37) 2 2x x    (6)  

3c.4 16 4 2 2x x    (12) 3 2 2x x    (3)  
 

Most students were able to find  1f  and  f a  correctly. However, for  f a , f x  , 

 2f x ,  1f x , and  2f x , mistakes fell into two categories: symbol manipulation, particularly in 

the case of a negative sign before a binomial bracket, and incorrect substitution, for example, writing 

2 1x   instead of  21x   for the first term when finding  1f x . The coefficient of 2x  in   f f x  

was correctly determined by less than half of the 383 students and only slightly more than half of the 

338 students who answered the question. Table 8 shows the numbers and percentages of these 338 

students who selected each of the alternative choices for the value of   f f x . Incorrect responses 

were probably the result of errors in algebraic substitution and manipulation, possible confusion of 

  f f x  with the derivative, and guessing if students did not know how to interpret   f f x . 
 

Table 8. Students’ Responses to Item 3d 

Value of 

  f f x  

Number of 

students 

Percentage 

(n = 338) 

0 25 7 

1 64 19 

2 40 12 

3 25 7 

4* 178 53 

5 3 1 

Other 3 1 

* indicates correct value 
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Questions 5, 6 and 7 

In each of questions 5, 6 and 7, students were presented with a graph and asked to select from a list the 

appropriate rule for the graph. 

A substantial number of students did not answer questions 5 to 10, whereas all students answered 

Question 11. This suggests that these students may have found questions 5 to 10 difficult. For 

comparison, percentages of students selecting each multiple-choice option in questions 5 to 10 have 

therefore been expressed in tables 9 and 10 both as a percentage of the total number of students (383) 

and as a percentage of the students who answered the question. 

If we consider only those students who answered questions 5, 6 and 7, almost all students were 

successful in selecting the correct options. However, the approximate 10% of students who did not 

answer the questions is of concern if indeed this was because they found the questions difficult.  

Question 5 

 

5a   4 12f x x   

5b   22 3 2f x x x    

5c   12xf x e   

5d   3 23 4 12f x x x x     

Question 6 

 

6a   6f x x   

6b   26f x x x    

6c   6 2 xf x e   

6d   5 6f x x   

Question 7 

 

7a   3 4f x x   

7b   24f x x   

7c   2xf x e   

7d   42 3 4f x x x    
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Table 9. Students’ Multiple Choice Responses for Questions 5, 6 and 7 

Question 5    

 Percentage  

(n = 383) 

Percentage of those who answered  

(n = 349) 

Option 5a 0 0 

Option 5b 2 2 

Option 5c 0 0 

Option 5d* 89 97 

Unanswered 9  

Question 6 

 Percentage 

(n = 383) 

Percentage of those who answered  

(n = 346) 

Option 6a 1 1 

Option 6b* 89 98 

Option 6c 1 1 

Option 6d 0 0 

Unanswered 10  

Question 7 

 Percentage  

(n = 383) 

Percentage of those who answered  

(n = 347) 

Option 7a* 90 99 

Option 7b 0 0 

Option 7c 0 0 

Option 7d 0 0 

Unanswered 9  

* indicates correct option 

 

Questions 8, 9, 10 

In each of questions 8, 9 and 10 students were presented with a table of values and asked to select 

from a list the most appropriate type of function rule. 

Question 8 

 

x  f x  

2  4 

1  1 

 

8a linear 

8b quadratic 

8c exponential 

8d none of the above 
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0 0 

1 1 

2 4 

3 9 
 

 

Question 9 

x  f x  

2  0.04 

1  0.2 

0 1 

1 5 

2 25 

3 125 
 

9a linear 

9b quadratic 

9c exponential 

9d none of the above 

 

Question 10 

x  f x  

2  5  

1  4  

0 3  

1 2  

2 1  

3 0 
 

10a linear 

10b quadratic 

10c exponential 

10d none of the above 

 

As for questions 5, 6 and 7, approximately 10% of students did not answer the questions 8, 9 

and 10 (see Table 10). If we consider only those students who answered the questions, it seems that 

some students found it harder to match a type of function with a table of values than with a graph. 

Most students (95%) who answered Question 10 selected 10a linear. This reflects the discrepancy 

between school mathematics where any straight line function is commonly called ‘linear’ and the more 

precise nomenclature of tertiary mathematics which distinguishes linear functions as a special case of 

affine functions. Linear functions map 0 to 0. We could assume that some of the 11 students who 

selected ‘none of the above’ were unable to determine the relationship between the y-values and the x-

values. However, it may be that some had encountered affine functions and would know that the table 

did not represent a linear function as the point (0, 0) is not consistent with the values in the table. So 

this question may have disadvantaged students whose knowledge went beyond normal secondary 

school mathematics.  
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As for questions 5 to 7, if we assume that those who chose not to answer the questions did so 

because they found the questions difficult, the findings suggest that up to 15% of these undergraduate 

mathematics students are unable to match a table of values with the simple function types they would 

have met in secondary school mathematics.  
 

Table 10. Students’ Multiple Choice Responses for Questions 7, 8 and 9 

Question 7    

 Number of 

students 

Percentage  

(n = 383) 

Percentage of those  

who answered  

(n = 347) 

Option 7a 3 1 1 

Option 7b* 327 85 94 

Option 7c 12 3 4 

Option 7d 5 1 1 

Unanswered 36 9  

 

Question 8    

 

Number of 

students 

Percentage  

(n = 383) 

Percentage of those who 

answered  

(n = 343) 

Option 8a 8 2 2 

Option 8b 7 2 2 

Option 8c* 307 80 89 

Option 8d 21 6 6 

Unanswered 40 10  

 

Question 9 
   

 Number of 

students 

Percentage  

(n = 383) 

Percentage of those who 

answered  

(n = 341) 

Option 9a* 323 84 95 

Option 9b 5 1 2 

Option 9c 2 1 1 

Option 9d 11 3 3 

Unanswered 42 11  

* indicates correct option 
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CONCLUSION AND SUGGESTION  

Although universities all have different entry requirements and assume differing levels of 

background knowledge, for students studying mathematics either as a subject in its own right or as 

part of a science, commerce or engineering degree, a basic level of proficiency with fundamental 

skills, like algebraic manipulation is required. Conceptual understanding is harder to mandate, but 

implications can be made from considering topics students have covered at secondary school. So if 

calculus or probability, for example, is studied at school, it would be natural to assume that the 

curriculum included a deep study of functions, and so at tertiary level, functions may be revised rather 

than developed again from scratch. If students lack the fundamental understanding required, then all 

that comes after is built on shaky foundations.  

By the end of secondary schooling we are discussing the concept of function in the context of a 

domain and codomain that are either the whole of ℝ or subsets of ℝ. Once students arrive at 

university, the idea of function is quickly extended in a variety of ways; for example, we can think of 

Re(z) and Im(z) as functions with domain ℂ and codomain ℝ, we can think of  a bijection that maps ℂ 

onto ℝ2, we study functions from ℝn to ℝ – functions of several variables, in linear algebra we think of 

functions from ℝm to ℝn, we study inner products mapping ℝn to ℝ and so on. After that we think of a 

more generalised notion of function where the domain and codomains may be polynomials, matrices 

or functions themselves, and this is still first year university. It is hard to imagine how students make 

sense of this if they have not yet mastered the idea of a function, or can only do so in the context of the 

graph of a function.  

But perhaps even more importantly, when students come to university (or progress through year 

levels of school) holding misconceptions or lacking deep understanding, it can be hard to reverse. 

When trying to redress these misconceptions, students will often disengage, since their beliefs and 

understandings are challenged, leading to insecurity in their own thinking.  Hence it is important to 

constantly reinforce old concepts in new settings, helping students to make connections between 

related mathematical ideas. 

Misconceptions and naïve ignorance relating to the concept of function are apparent for a 

significant number of students in the study. These misconceptions are consistent with those previously 

reported in the literature.  

Although we were not particularly seeking for a formal definition of function when asking 

students to explain, in words, what a function is, few were able to give a correct explanation.  The 

often vagueness of their explanation seemed to be reflected in their inability to determine if a graph or 

a rule represented a function, and a substantial number were not able to identify the type of function 

(for example, quadratic or exponential) represented in a graph or table of values. From responses to 

Question 2 and Question 11, for example, it seems that students do not make a clear distinction and get 

confused between what is a function per se and continuous function, differentiable function, one-to-

one function etc, or a hybrid function that has more than a single rule descriptor. The inconsistent 
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responses to questions 2 and 11 indicate that a considerable number of these undergraduate students 

either did not make connections between the different modes of representation of functions or at least 

that they were more likely to identify a function from its graph correctly. To this matter, it is 

interesting to note that more students seemed to recognise a hybrid function when provided with its 

algebraic rule than when represented graphically. It could be that a function that is not differentiable, 

as can be seen on the graph, maybe what affected students’ choices. If this hypothesis proves to be 

correct, then it should also explain why  of the 14 students who referred to the ‘vertical line’ test in 

Question 1, eleven responded correctly to all three graphs, but the other three did not identify the 

graph in item 11a as a function. Students’ apparent familiarity with graphical representations may be a 

reflection of the increased ease of access to many examples through the use of technology. However 

the inconsistencies in their responses to Questions 2 and 11 suggests that there has not been a teaching 

emphasis on linking numeric, symbolic and graphic representation as recommended in the literature 

(Dreyfus, 2002; Yerushalmy, 2004; Zbiek et al, 2007). 

Of further concern is the inability of many students to accurately manipulate algebraic 

expressions (Question 3), with common errors relating to negative signs before brackets containing a 

binomial expression. Incorrect responses to this question also indicated some important manipulative 

errors when students had to deal with double entry arguments (arguments with single entry such as 1, 

a, x2 had a much higher correct response rate than arguments like –a, –x, 2x, x+1).Technology could 

also be used to emphasise that, for example, substitution for x replaces every x in the expression, not 

just the first one. Quick checking of the results of each stage of problem solution not just the final 

answer would immediately alert students to this error.  

That all of these students had been sufficiently successful in their final year of school 

mathematics to enrol in first semester undergraduate mathematics at a high profile university suggests 

that school mathematics, including final year examinations, emphasises skills rather than deep 

conceptual understanding. The advice of Vinner and Dreyfus (1989), Sierpinska (1992) and others is 

still pertinent. Students need to develop a concept of function through exposure to many examples 

where the various representations are linked and then summarise and formalise this learning through 

the application of the definition of function. It is critical that students are aware of the aspects of the 

definition of function that they are calling on when they are asked to consider functionality and that 

they are able to make connections between the various representations of function.  
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