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Abstract 

This paper offers a framework for mathematics lesson design that is consistent with the way 

we learn about, and discover, most things in life. In addition, the framework provides a 

structure for identifying how mathematical concepts and understanding are acquired and 

developed. This framework is called ELPSA and represents five learning components, 

namely: Experience, Language, Pictorial, Symbolic and Applications. This framework has 

been used in developing lessons and teacher professional programs in Indonesia since 2012 in 

cooperation with the World Bank. This paper describes the theory that underlines the 

framework in general and in relation to each inter-connected component. Two explicit 

learning sequences for classroom practice are described, associated with Pythagoras theorem 

and probability. This paper then concludes with recommendations for using ELPSA in 

various institutional contexts. 
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Abstrak 

Tulisan ini menawarkan suatu kerangka rancangan pembelajaran matematika yang sifatnya 

konsisten dengan cara kita mempelajari sesuatu atau menemukan hal-hal dalam kehidupan ini. 

Kerangka ini menyiapkan suatu struktur untuk mengidentifikasi bagaimana konsep dan 

pemahaman matematika diperoleh dan dikembangkan. Kerangka rancangan ini disebut 

ELPSA dan memuat lima komponen pembelajaran:  Experience (pengalaman), Language 

(bahasa), Pictorial (gambar), Symbolic (symbol) and Applications (aplikasi). Kerangka ini 

telah digunakan dalam mengembangkan pembelajaran matematika dan program 

pengembangan guru-guru di Indonesia sejak tahun 2012 atas kerjasama penulis dengan Bank 

Dunia. Tulisan ini mendeskripsikan teori yang mendasari kerangka ELPSA baik secara umum 

maupun dalam hubungannya dengan setiap komponen-komponen ELPSA yang sifatnya 

saling berkaitan. Tulisan ini juga menyajikan dua urutan pembelajaran untuk pengajaran 

matematika di kelas, berkaitan dengan teorema Pythagoras dan peluang. Tulisan ini kemudian 

diakhiri dengan rekomendasi penggunaan ELPSA dalam konteks institusi yang beragam.  

 

Kata Kunci: ELPSA, kerangka rancangan pembelajaran, Teorema Pythagoras, peluang 

 

This paper describes a learning framework that has been developed and modified over a 20-year 

period. From a foundational perspective, our conceptualisation of the framework was informed by a 

book written by Liebeck (1984) titled How Children Learn Mathematics. During the mid 1990s, the 

initial work was modified by the first author as a way of introducing mathematics pedagogy to 

undergraduate primary and secondary students. Various iterations of the framework were undertaken 

over a 10-year period by colleagues at Charles Sturt University in Australia. The model explained in 

this paper is the one initially proposed by the first author.  
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The initial model outlined by Liebeck (1984) was focused on how concepts are developed in 

terms of mathematics understanding. Our insights and development are more closely aligned to 

mathematics lesson design and, in particular, how mathematics ideas should be sequenced in order for 

students to make sense of these ideas. In addition, our learning framework affords opportunities for 

teachers to better understand the way in which pedagogical practices and learning experiences can be 

effectively presented to students in ways that reflect students’ concept development. The specific 

activities and mathematics lessons presented in this paper illustrate the practical use of our learning 

framework, which have been developed as both authors worked closely with mathematics education 

academic and classroom teachers in an Indonesian context. To this point, the learning framework 

provides opportunities for teachers to enhance the content pedagogical knowledge as well as provides 

learning experiences for children that could be classified as culturally appropriate and personalised.  

It is our view that the learning design described in this paper follows an authentic sequence that 

stimulates concept development. That is, the learning design reflects the manner in which individuals 

make sense of mathematics ideas. In classroom situations, teachers often concentrate on presenting 

mathematical ideas in symbolic ways. Although it is critical for students to develop flexible thinking 

that utilise symbols, full understanding can only be attained when ideas are presented in ways that 

lead to the necessary (or efficient) employment of symbolic representations. Typically, this can most 

effectively be achieved if multiple forms of representation precede symbolic understanding. From our 

experience, junior high school teachers overly focus on symbolic reasoning to the detriment of other 

concrete and pictorial representation of mathematics—and this is certainly the case in Indonesia 

(World Bank, 2010).  

Our learning framework is underpinned by theories about learning that are considered 

constructivist and social in nature. The ELPSA framework views learning as an active process where 

students construct their own ways of knowing (developing understanding) through both individual 

thinking and social interactions with others. Several variations of how students develop concepts or 

establish abstract thought have been mentioned in the literature. Liebeck (1984) proposed that 

mathematics was an abstraction from reality in that a specific sequence of events took place as 

concept formation led to understanding. In her model, her sequence was framed around E 

(Experience); L (spoken Language that describes the experience); P (Pictures that represent the 

experience); and S (written Symbols that generalise the experience). We have expanded these stages 

of progress in describing mathematical understanding to include an application phase, which 

describes how the acquisition of knowledge can be applied to different situations. 

Our framework assumes that experiences, both personal and collaborative, are the foundations 

for the introduction of new learning opportunities. This strong social dimension is critical in the first 

component of our framework. A number of theorists subscribe to this notion of engagement (Cobb, 

1988; Lave & Wenger, 1991; Lerman, 2003; Wenger, 1999). The central idea to the work of social 

theorists is based on the premise that learning occurs through participation and that participation 
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should encourage high levels of engagement and interaction. For example, Wenger (1999) indicated 

that meaning (for example the understanding of a concept) is most meaningfully developed through 

opportunities associated with one’s personal life experiences or opportunities to sustain mutual 

engagement. If classroom practices allow students to develop mathematical ideas from personal 

experiences and understanding, it is much more likely that content can be introduced in meaningful 

ways. Such a viewpoint is frequently taken by those who adhere to the realistic mathematics model 

(Gravemeijer, 2010; Heuvel-Panhuizen, 2003; Widjaja, Fauzan, & Dolk, 2010). This social 

foundation is embedded in the way that language is utilised in promoting learning. Social theories 

associated with how experiences are scaffolded (Vygotsky, 1978); how culture influences perception 

(Bishop, 1988a, 1988b); and the influence of daily language on mathematics language (Adler, 1998; 

Setati & Moschkovich, 2010) reveal the importance of connecting personal experiences to 

mathematical terminology in order to ensure that sense making can be promoted. 

Psychology-based theories are also influential in our learning framework. The manner in which 

mathematical ideas are represented is critical to sense making. Dienes (1959) argued that concrete 

representation and manipulatives supported students’ learning as they move towards more abstract 

concepts and ideas. In terms of understanding mathematics ideas, concrete representations often 

provide the learner with the mental model of how pictures and symbols can be represented before 

students develop analytic reasoning. For example, Dienes’ concrete manipulatives were used to 

represent addition and subtraction algorithms in a concrete pictorial manner. In our learning 

framework, this would take place in the pictorial component.  

Mathematics representations can be classified within two systems, namely internal and external 

(Goldin & Shteingold, 2001). Internal representations are commonly classified as pictures “in the 

mind’s eye” (Kosslyn, 1983) and include various forms of concrete and dynamic imagery (Lowrie & 

Logan, 2007) associated with personalised, and often idiosyncratic, ideas, constructs and images. 

External representations include graphical representations (e.g., graphs and maps), schematic 

representations (e.g., networks) and conventional symbolic systems of mathematics (e.g., algebraic 

notation or number lines). These two systems do not exist as separate entities and are seen as “a two-

sided process, an interaction of internalization of external representations and externalization of 

mental images” (Pape & Tchoshanov, 2001, p. 119). In mathematics classrooms, visual-spatial 

information is commonly represented schematically or pictorially (Hegarty & Kozhevnikov, 1999), 

while verbal information is represented with number sentences or algorithms (Diezmann & Lowrie, 

2008). The process of developing internal representations is typically visually based (or pictorial in 

our framework). External representations can also be pictorial—for example, a student encoding a 

graphic. In addition, external representations can be symbolic—for example, producing an algebraic 

statement.   

Internal representations often involve the process of decoding information. Encoding occurs 

when the learners construct their own representation in order to solve a task. These techniques provide 
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students with the opportunity to understand all the elements of a task in a manner that helps scaffold 

understandings (e.g., drawing two circles and dividing each into segments to better understand a ratio 

problem).  By contrast, decoding techniques are used to make sense of information that has been 

given by someone else (e.g., a teacher). In such situations, the students make sense of information 

(e.g., a map, a pie chart, or a line graph). The capacity to encode and decode information is critical to 

problem solving, and is especially addressed in the pictorial component of the ELPSA sequence.  

In our framework, the symbolic component involves the students’ capacity to represent, 

construct, and manipulate analytic information in a symbolic manner. Mathematical symbols include 

number sentences, algebraic expressions, and other external representation that use symbolic 

notations. According to De Cruz and De Smedt (2013), mathematical symbols enable us to perform 

operations and actions that would not be possible without such supports. For example, a 

multiplication algorithm is a symbolic operation that is required when multiplying a 3-digit number 

by a 3-digit number. Theoretically, mathematics symbols are best utilised when the student has 

formed a sound understanding of a particular concept. Research suggests that students can experience 

difficulties when shifting from one symbolic representation to another (e.g., repeated addition to 

multiplications, and algebraic forms such as (𝑎 + 𝑏)2 = (𝑎2 + 𝑏2) ). In this component of our 

learning framework, it is necessary for children to practice using symbolic operations and notations in 

order to develop fluency. As Uttal, Scudder, and DeLoache (1997) suggested, explicit instruction is 

necessary for students to use objects in a symbolic way. This commonly occurs with the use of 

textbooks or, more recently, in technological devices. In mathematics, algebra is often considered to 

be an instance where students face mathematical challenges if foundational understanding have not 

been developed. In our learning framework, we advocate that symbolic representation should not be 

presented until children have developed foundational skills. To this point, mathematical symbols are 

more than external representations of concepts. Symbols represent underlying mathematical concepts 

and understanding. If mathematical symbols are introduced too early, students are likely to use them 

inappropriately.  

Most learning frameworks do not explicitly recognise the role of application in the learning 

process. However, the manner in which students are able to apply mathematics ideas to new situations 

is considered critical to the enhancement of students’ mathematical literacy. In fact, international 

agencies, such as the Program of International Student Assessment (PISA), have stated that:  

The mathematical literacy assessment framework was written to encourage an approach to 

teaching and learning mathematics that: gives strong emphasis to the processes associated with 

confronting a problem in a real-world context; transforms the problem into one amenable to 

mathematical treatment; makes use of the relevant mathematical knowledge to solve it; and 

evaluates the solution in the original problem context. If students can learn to do these things, 

they will be much better equipped to make use of their mathematical knowledge and skills 

throughout their lives. So PISA measures not only the extent to which students can use their 

mathematical content knowledge, but assesses what they know and how they apply their 

knowledge of mathematics to new situations (Thomson, De Bortoli, & Buckley, 2013, p. 16; 

emphasis added). 
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There is an evidence base that suggests students do not utilise mathematics understandings 

developed in the classroom in out-of-school situations. An extensive study in Brazil (Nunes, 

Schliemann, & Carraher, 1993) found that uneducated workers were able to utilise mathematics 

calculations and problem-solving processes more effectively in workplaces than those people who had 

much more mathematics education (schooling in mathematics). Nunes et al. (1993) argued that 

students exposed primarily to the process of manipulating mathematical ideas symbolically could not 

use these representations effectively in new situations. More recently, Australia’s Chief Scientist 

(Chubb, 2014) argued that mathematics was becoming irrelevant in the workplace because core 

mathematics skills, such as interpreting data and decoding graphs, were not applied in classroom 

situations that are connected to real-life experiences. Although problem-solving activities that are 

overly authentic can be very challenging for students to solve (Lowrie, 2011), exposure to activities 

that encourage students to apply mathematics knowledge to new situations (and related situations) 

both help to reinforce concepts and provide opportunities to scaffold understandings. As Boaler 

(1998) maintained, application-based projects support students in ways that are beneficial in and out-

of-school.  

 

The Nexus between Theoretical and Practical Aspects of the ELPSA Framework 

The ELPSA framework views learning as an active process where students construct their own 

ways of knowing (developing understanding) through both individual thinking and social interactions 

with others. However, it is important not to view ELPSA as a linear process. Learning is complex and 

unpredictable and does not occur in a linear sequence, and thus the elements of the model should be 

thought of as interrelated and overlapping. It is also not to be restricted as a mathematics model.  

The following analogy describes the way in which an individual could acquire an 

understanding of the concept “cat”. An infant may hear the word “cat” whenever a small furry ‘thing’ 

is given a green bowl with something smelly in it. That process may happen every day for months 

(this is called Experience). The infant’s mum may say, “Has anyone fed the cat yet?” One 

extraordinary day the infant may say “cat” as the furry animal walks past (Language development). A 

parent gives the child a hug and says, “What a clever little child. Yes, that is a cat.” On a walk one 

day the infant says “cat” as a brown furry ‘thing’ walks past. “No, that is not a cat, it is a dog. Can 

you say DOG for me?” Twelve months later our toddler is able to point to a picture in a book and say 

“cat”, and also point to a picture on the next page and say “dog” (Pictorial representation). In Year 1, 

the child can write the word CAT and appreciate that cat is a pet that may come in a variety of colours 

and breeds (Symbolic representation). In Year 3, the child understands that lions and tigers are cats, 

that there are domestic and feral cats, and their cats at home is called a Persian cat. By high school, 

the child might know the difference between a leopard and a jaguar (Application of knowledge). This 

process of understanding the concept of “cat” could take many years to lead to a sophisticated 
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understanding of the word. And, in fact, the application component may not be attainable during one 

person’s lifetime.  

It is important to remember that although the components of ELPSA will be discussed and 

presented individually, they should not and cannot be implemented in isolation but incorporated and 

intertwined throughout the lesson. Although we use our framework to design individual mathematics 

lessons, units of work and learning designs within the mathematics curriculum. It is also the case that 

this framework can describe concept acquisition not pertaining to the mathematics discipline.   

 

What Is ELPSA? 

The ELPSA framework follows a learning design approach, which is cyclic in nature. This 

design presents mathematical ideas through lived experiences, mathematical conversations, visual 

stimuli, symbolic notations, and the application of the applied knowledge. In this learning design, 

teachers are encouraged to introduce concepts from what the students know. This first component of 

the design process is Experience. Experience considers how students have used mathematics, what 

particular concepts they know, how they can acquire that information, and how mathematics has been 

experienced by individuals, both in and outside of classrooms. The experience component of the 

design also includes assessments, since the teacher must determine what the students know and what 

new information needs to be introduced to scaffold their understanding. The first component of this 

design process can be introduced through brainstorming, general discussions, the use of visual 

stimulus, and rich stories from the teacher or students. As a consequence, Experience is also 

associated with feedback and revision. 

The second component of the design is associated with how Languages are used to promote 

understanding. In mathematics, mathematical language is both generic and specific. Some languages 

are associated with literacy, while other languages are particular to mathematics concepts (e.g., 

corners and angles). This component of design commonly follows Experience and focuses on both the 

generic and specific language required to represent mathematical ideas. This component of the design 

is also associated with particular pedagogy practises, since it is important for teachers to model 

appropriate language and for students to use this language to describe their understanding and 

converse with peers and teachers, to both explain and reinforce understanding.  

The third component of the learning design is associated with the use of visual representations 

to represent mathematical ideas. Pictures are critical aspects of mathematics. Commonly, there are 

two types of pictures used in the classroom: (1) those constructed by the teachers or from learning 

resources; and (2) those constructed by the students. An example of the first type of picture would be 

the representation of different parallelograms, including rectangles, squares, and parallelograms from 

the textbook. These pictorial representations are used to describe two-dimensional shapes in a 

quadrilateral family. The second type of picture are those the students construct on paper, computer, 

or in their “mind’s eye”. Students might imagine transforming a square into a rectangle in their 
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“mind’s eye”, or they might draw a diagram to solve a geometric problem. Pictures are often used to 

help to scaffold their understanding and to provide stimulus to complete mathematical tasks before the 

introduction of the symbolic notation. For example, students might cover the area of a rectangle with 

a small centimetre square to calculate the area of the shape. This process is the building block to 

understanding the concept of area, and it is necessary to introducing the formula of the area of a 

triangle (A = 1/2 × base × height). In most instances, students are required to decode information 

represented by others and encode information they represent themselves.  

The next component of the learning design is the most common and frequently used in the 

aspect of teaching. That is, the use of symbols to represent mathematical ideas. This component 

sometimes makes mathematics different from other discipline areas, and sometimes refers to a 

universal language. Nevertheless, it is often the most poorly taught discipline. For example, most 

students are taught that 6 × 4 = 4 × 6. Although the product is 24, one aspect of the symbols refers to 

six lots of four and the other refers to four lots of six. If students are encouraged to learn their 

multiplication tables by route learning, they may not always understand what the symbols actually 

represent. This is why it is important to progress the students through the learning cycle. Therefore, 

before knowing that 6 × 4 = 24, students should be able to draw a matrix that pictorially represents six 

groups of four. 

The application component of the learning design highlights how symbolic understanding can 

be applied to new situations. Students who understand that area equals base times height, can apply 

this knowledge to new understanding associated with volume, that is volume can be represented as 

area times depth. The application component also provides opportunities for students to see how 

mathematics can be used in and out of school contexts. With respect to area concepts, there are many 

applications in the building industry, for example, 3-4-5 triangles associate with the Pythagoras 

theorem. Builders designing trusses to build the roof of the house use this knowledge. 

 

Applications of the ELPSA Framework in the Classroom 

In the following section, we outline two sequences of lessons that utilise the ELPSA learning 

framework. The first lesson describes the learning sequence within the geometry strand of the 

curriculum, specifically, developing learning opportunities around the concepts of Pythagoras 

Theorem. The second lesson considers learning experiences within the probability strand of the 

curriculum. Each lesson identifies learning activities within the five components of the ELPSA 

framework.  

Lesson 1: Pythagoras Theorem (Grade VIII) 

Experience. We need to find out what the students know about triangles and angles. For 

concepts of triangle, it is important to establish whether the children can identify right-angle triangles 

from other triangle classifications. For example, it might be helpful for students to classify isosceles 

triangle, from equilateral triangles and other form of triangles. By doing this the teacher is 
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establishing children’s experiences and assessing the extent to which the students can recognise 

triangles that have right angles (which conceptually would be necessary in order to understand the 

concept of hypotenuse). With respect to angle, it is necessary for the students to be able to classify 

right angles from angles that are obtuse and acute. These two concepts are critical to building an 

experience-based understanding that will eventually lead to students’ acquisition of the Pythagorean 

formula. 

Language. There are a number of critical mathematical terms that need to be developed in order 

to establish understanding. Terms such as right angle and hypotenuse, and a general understanding of 

perimeter need to be addressed explicitly. Some development will occur when establishing the 

student’s Experience. Other activities should involve the teacher encouraging students to verbalise 

their thinking (including responses to the teacher’s explicit questionings) in order to discriminate 

between similar sub-concepts. For example, a teacher can post questions such as: (1) What is the sum 

of the three internal angles in a triangle?; (2) If one angle in a triangle is 90 degrees, what could the 

other two angles be?; and (3) What is the relationship between internal angles of a triangle and the 

length of the opposite side? 

As part of the questioning process, it would also be useful for small groups of students (pairs of 

students) to explain to one another their understanding of the challenges of calculating the perimeter 

of triangles. Questioning and discussion activities should provide opportunities for students to 

consider ways of generating solutions to problems, such as calculating the perimeter of a triangle, 

calculating an unknown third side or an unknown angle of a triangle, and recognising where the 

hypotenuse would be on a right-angle triangle. For each of these questions, students begin to realise 

they do not have the knowledge to complete the tasks (at that point in time). 

Pictorial. Provide students with grid paper so that they can draw a number of right-angled 

triangles. The teachers should begin the demonstration by drawing the following picture on the board: 

For the first two pictures, use the following dimensions: (1) 4cm and 3cm; and (2) 12cm and 

5cm. 

Ask the students to draw these pictures on grid paper with the appropriate scale. Then ask the 

students to join the pictures to make triangles and to measure the third side. 

The teacher then could produce a table, which represents the sides of these shapes. The students 

can then draw their own right-angled triangles and record the sides of these shapes (e.g., the student 

might draw sides 5cm and 8cm and then have difficulty calculating the exact measurement of the third 

side). It is unlikely that the student will be able to produce a precise measurement and it may be the 

case that two students will give different answers for the third side of this triangle. 
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This type of disruption in thinking helps the teacher to introduce the need for a formula to 

ensure that accurate measurement can take place. It is often the case that the pictorial element of the 

design leads to the production of a symbolic formula. 

Pictorial and Symbols Representations. The following symbolic formula should be introduced: 

 

 

𝑐2 =  𝑎2 +   𝑏2 

 

The teacher should draw a right-angled triangle on the board, and label it appropriately (with 

the algebraic notation as in the picture above). These representations are a bridge between pictorial 

and symbolic of the learning design. At this point in time it would also be worthwhile to generate a 

table to record results.  

Table 1. A form for students’ data record 

A b c a2 b2 a2  + b2 c2 c 

3cm 4cm … … … … … … 

5cm 12cm … … … … … … 

2cm 4cm … … … … … … 

1cm 5cm … … … … … … 

8cm 15cm … … … … … … 

7cm 24cm … … … … … … 

… … … … … … … … 

… … … … … … … … 

 

The next construct is to introduce the actual formula to the students. Formulas should be used 

in conjunction with pictorial representations that would allow students to easily calculate the area of 

particular shapes. For example, 3-4-5, 6-8-10, and 5-12-13 triangles are good examples to use.  

Explicit modelling of the formula can be undertaken within the table that has been generated. 

The students should then draw their own triangles and complete the table using their own data. Since 

the students are encouraged to calculate the square root of c they can measure the third side of the 

triangle as a way of checking their answer (it is important for students to realise that this measurement 

must be accurate but rather an close approximation of the generated solution). 

The students should then complete worked examples that require the completion of tasks that 

use the formula. These examples should include an unknown side (a or b), as well as examples that 

require a solution for side c (as above). Such examples are often found in textbooks or worksheets and 

are helpful for reinforcing and practising the newly used concept. 
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Application. For Batik makers and tailors, being able to ‘square material’ is important. One way 

of ensuring that material is ‘square’ is applying Pythagorean principles. For example, to demonstrate 

how carpenters and builders utilise a 3-4-5 triangle to ensure two dimensional objects or squares. 

The development of a new mathematics lesson could contain all five of the ELPSA constructs. 

In such situations, some of the constructs would only be considered for a short period of time. It may 

well be the case that the constructs would be considered simultaneously. For example, in ascertaining 

what experiences students bring to a lesson, a teacher may design activities that involve both 

Experience and Language and present them together. It may also be the case that teachers focus on 

Experience only. Such situations could include a discovery or problem-based activity.  

The introduction of the concept developed above (with the introduction of a new theorem) 

could reasonably be developed in three or four consecutive 40-minute lessons. The number of lessons 

would depend on the student’s foundational understandings (which would be ascertained via the 

Experience and Language components of the design).  

More commonly, a teacher would design a lesson that focuses on two or three constructs only. 

For example, the teacher may introduce the lesson via pictorial representations and encourage the 

children to use symbolic notation throughout the lesson. 

Lesson 2: Probability (Grade XI) 

This sequence of lessons is based on an open-ended investigation of a well-known probability 

paradox. Ideally, the introductory phase of the lesson sequence should be undertaken with two 

mathematics classes of students (approximately 60-70 students). Thus, the Experience and Language 

aspects of the lesson would be introduced (potentially outside the classroom) with two groups of 

children being introduced to the following scenario: 

“What is the likelihood of at least two children in this group sharing the same birthday?” 

Experience. Once this scenario has been proposed to the students, an experiment should be 

conducted. The classroom teachers ask several students to formulate a statement based on the 

likelihood of the event. From our observations, we have found that the students proposed the 

following kinds of statements: “There would be 1/365 chance of two children having the same 

birthday”; “There would be 70/365 chance of two people sharing the same birthday”; or “It would 

be unlikely that two children would have the same birthday”.  

The teachers should not react to these statements, however, it would be necessary to come back 

to the students’ statements in the Language component.  

The teachers ask all of the children who were born in January to stand up and name the day 

they were born. If a common birthday is found, those students are asked to sit together and the other 

students are asked to sit down. This process is repeated for students born in February, followed by a 

series of observations until all students have being able to determine any matching of birthdays, 

within the 12 months. The names of the pairs of students of common birthdays are recorded and the 

students are asked to go back to their respective classrooms. 
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Language. The experimental data are recorded on the board. It is highly likely that at least one 

pair of students shares the same birthday; however there may be several combinations within the 

cohort. It is important for the classroom teacher to revisit the statements made by the students at the 

beginning of the experiment. Students should be encouraged to predict why their friends may have 

presented such statements. It is critical that the teacher models appropriate language and encourages 

the students to do the same. It is also necessary to allow students to provide updated ideas based on 

the experiment that took place in the Experience component of the lesson sequence.  

Pictorial representation. The teacher should now present to students the following pictorial 

representation that describes the computing probability of at least two children sharing the same 

birthday amongst a certain number of people. 

 

Students should be encouraged to decode the graphic and talk to their friends about what the 

graphic might mean. The classroom teacher should scaffold the students to interpret the information 

on both the x- and the y-axis and to talk about the specific information associated with the numeral 

“23” on the x-axis. The following statement should be proposed by one of the students “If there were 

23 children in a room, the probability of two people sharing the same birthday would be 0.5”. 

Students should be then encouraged to draw lines from the x- and y-axis that represent the experiment 

that took place at the beginning of the lesson sequence (e.g., drawing a line from 70 on the x-axis if 

there were 70 students in the cohort). Scaffold the students to read the graph such as “If there were 70 

children in a room, the probability of two children sharing the same birthday would be more than 

0.9”.  

Symbolic. The students should be encouraged to understand symbolic representation of the 

pictorial representation presented above. In order to simplify the task, ask the children to assume 

there are 365 possible birthdays that are equally likely to happen (therefore disregarding such 

variation as leap years). 

To solve this problem, the teacher can begin from discussing a common formula for 

probability, that is, the sum of the probability that an event will happen and the probability that the 

event will not happen is always 1. For example, the chance that today might rain or might not rain is 

always 1 or 100%. Similarly, the probability that no two people will have the same birthday added by 

the probability that two people will share a birthday is equal to one. 
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P(at least two people share birthday) + P(no two people share birthday) = 1 

P(at least two people share birthday) = 1 - P(no two people share birthday) 

Finding the probability of at least two people sharing the same birthday is more complicated 

because this requires finding the probability that the first person will have the same birthday of the 

second person, or the third person, and so on. Therefore, the teacher can direct students to answer the 

question: What is the probability that no two people will share a birthday? with the following 

explanations. 

Lets start with 2 people (N=2). 

 The first person can have any birthday, leading to 365/365 or 100% chance. 

 The second person’s birthday has to be different because no two people will share a birthday. 

As a result, there only (365-1) = 364 days to choose from. So the chance that the second 

person has a different birthday is 364/365.  

 The probability that both people have different birthdays is: 

 
365

365
×

364

365
=  0.997 = 99.7% . In other words, there is a 0.3% chance that both people will 

share the same birthday. 

If there are three people (N=3). 

 The first person can have any birthday, leading to 365/365 or 100% chance. 

 The second person's birthday has to be different because no two people will share a birthday. 

As a result, there only (365-1) = 364 days to choose from. So the chance that the second 

person has a different birthday is 364/365. Consequently, the chance that the third person has 

a different birthday is 363/365. 

 The probability that the three people have different birthdays is: 

 
365

365
×

364

365
×

363

365
=  0.992 = 99.2% . In other words, there is a 0.8% chance that the three 

people will share the same birthday. 

If N = 23. 

 The probability that the 23 people have different birthdays is: 

365

365
×

364

365
×

363

365
× … ×

(365−(23−1))

365
=  0.493 = 49.3%  . In other words, there is a 50.7% 

chance that the 23 people will share the same birthday. 

A formula for the probability that N people have different birthdays is: 

365

365
×

364

365
×

363

365
× … ×

(365−(𝑁−1))

365
. 

Therefore, the formula for the probability that at least two of N people sharing birthdays is: 

1 − (
365

365
×

364

365
×

363

365
× … ×

(365−(𝑁−1))

365
). 

Application. An application of this lesson sequence could align to either: (1) further 

development of the symbolic notation; and/or (2) real-life application of probability. With respect to 

further development of the symbolic notation, students could be encouraged to propose the number of 
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people within the cohort and determine each probability with the support of the graph and 

understanding developed in the symbolic component of the lesson sequences. As part of the 

application process students could construct a table similar to Table 2 presented below. 

Table 2. Probability of at least two children in a group of N children sharing the same birthday 

Number of children 

(N) 

Probability P(N) 

1 0.0 

5 0.027 

10 0.117 

20 0.411 

23 0.507 

30 0.706 

40 0.891 

50 0.970 

60 0.994 

70 0.999 

100 0.9999997 

 

In this application, there is no relationship between different mathematical representations (that 

is, a line graph, a table, and a symbolic representation). 

With respect to real-life application, students could be introduced to information about the 

weather that predicts the likelihood of rain in a given day. Data could be gathered from the Internet as 

illustrated in Figure 1. 

 

 

 

 

 

 

Figure 1. An example of the use of probability ideas in real-life. 

 

CONCLUSION AND RECOMMENDATION 

The ELPSA framework is presently being introduced to classroom practitioners, policy makers 

and university lecturers throughout one province of Indonesia. The initiative forms part of an 

Australian Department of Foreign Affairs and Trade project titled, “Promoting mathematics 

engagement and learning opportunities for disadvantaged communities in West Nusa Tenggara, 

Indonesia”. Initial evidence indicates that the framework has great promise in enhancing the quality 

of teaching and learning in mathematics classrooms. We maintain that each component of the 
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framework is critical for establishing sense making and mathematics understanding in classrooms, 

and that the component sequence provides a logical sequence to scaffold, reinforce and apply 

mathematics knowledge and concept development. It is important to note that the learning design will 

work most effectively when classroom teachers (and curriculum specialists) embrace the logic of the 

design—that is, present learning opportunities and activities in ways that emphasis each component of 

the framework. To this point, the presentation of learning activities should be seen as value adding to 

the design through the development of mathematically explicit ideas and practices.  
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