DESIGNING PISA-LIKE MATHEMATICS TASK USING ASIAN GAMES CONTEXT

Ratu Ilma Indra Putri, Zulkardi
Universitas Sriwijaya, Palembang, Indonesia
Email: zulkardi@gmail.com

Abstract
This study aimed to produce a set of valid, practice and had potential effects of PISA-like mathematics tasks using Asian Games context to support students learning. Design research and lesson study were used as the method both during the design and implementation stages. Target users are 15th years old middle school students from PMRI pilot schools in Palembang. Results show that a set of PISA-like problems on uncertainty and data content are valid, practical, and had a potential effect. Students were doing mathematics in a collaborative, and the learning process becomes meaningful and easily.

Keywords: PISA-like Mathematics Task, Design Research, Asian Games


Several people use uncertainty and data content to solve the problems which are closely related to daily life (Johar, 2012; Permatasari, et al. 2018). Also, the content can be used to looking for the possibilities that can happen (Yanti, et al. 2016). The PISA's result in 2015, Indonesia was ranked 63 out of 70 countries in mathematics literacy (OECD, 2016).

Students were learning mathematics using textbooks that do not provide opportunities for students to learn mathematical procedures in solving context-based problems such as PISA (Wijaya, 2016). Also, Indonesia still using a low-level problem in the evaluation system, so that the student's abilities to solve non-routine problems become weak (Stacey, 2010; Novita, et al. 2012; Permatasari, et al. 2018; Nizar, et al. 2018; Pratiwi, et al. 2018).

In PISA, the problems were presented mostly in real-world situations, so it can feel the benefit of mathematics to solving the issues of daily life (Putri & Zulkardi, 2018; Jannah, et al. 2018). Furthermore, Zulkardi (2010) suggested to design the PISA-like mathematics problems and use them in the learning of mathematics in the class. However, in reality, the teachers have a problem when designing and implementing lessons so that the necessity of collaborating between math-educators
and teachers using the lesson study community.

In lesson study, the activities group of teachers collaboratively and continuously carry out, observe, and report learning outcomes (Putri & Zulkardi, 2019). According to Sato (2014), lesson study for learning community will make teachers eager to improve the quality of teaching from within, so it will later continue to strengthen their professionalism.

In 2018 Indonesia hosted the Asian Games. Wulandari and Atmojo (2014) stated that Asian Games was a sporting event of Asia countries on ever which is held every four years. The kind of the sport at the Asian Games was the games that most students did or watched like weightlifting, swimming competitions, football, table tennis, long jump, bike, aquatic, volleyball, taekwondo, karate, and bowling. Sport context can make the learning process more interesting because relate to students’ daily activity (Nizar, et al. 2018; Yansen, et al. 2018; Pratiwi, et al. 2019; Jannah, et al. 2019; Rawani, et al. 2019; Efriani, et al. 2019). The purpose of this paper is to produce a set of valid, practice, and have the potential effect of PISA-like mathematics problems using bowling context in Asian Games through lesson study.

METHOD

This research used design research method with development studies type through two stages (Zulkardi, 2002). Firstly, the preliminary stage with focuses on the preparation and design, literature review, designed instruments such as lattices, question cards and rubric assessment together with teacher by the 2015 PISA framework. Secondly, formative evaluation that includes the stage of self-evaluation, expert reviews, on-to-one, small group and field test (Zulkardi, et al. 2019).

In self-evaluation the researchers have analyze the instrument by ourselves. After that, the prototype was validated by experts based on content, constructs and language. Along with validations with experts, a one-to-one stage performed. This stages involving three students with high, medium, and low-ability. From the expert reviews and one-to-one phase, the instruments was valid.

Small group stage was conducted to find out the practicality of problems developed involving six students with various abilities. Then, the last stage was the field test involving 15th years old students in junior and senior high school as PMRI or Indonesian version of Realistic Mathematics Education pilot school in Palembang, Indonesia. The results of field test were analyzed to see a potential effect emerging from PISA-like problems using bowling context through students’ answer sheets.

The data collection techniques used walkthrough, documentation, observation, interview, and test. The data were analyzed by using the qualitative descriptive method to describe the result of each step of the development.
RESULTS AND DISCUSSION

This study produces a sharing and jumping task using Asian Games context. On the sharing task, PISA-like mathematics problem using football context and jumping task using bowling context. The stages of research implementation are preliminary involving lesson study socialization and plan stage. In this stage, the researchers analyzed PISA frameworks, curriculum 2013, designing a PISA-like using Asian Games context and making predictions of the students’ answers with mathematics teachers choose a model teacher in the field test. Design result of sharing and jumping task can be seen in Figure 1.

(a) Sharing task using football context
(b) Jumping task using bowling context

Figure 1. Design result of sharing and jumping task

After plan stage, the task used in the expert reviews and one-to-one stage were conducted in parallel to see the validity of problems. The problems were validated by expert from Brunei Darussalam University, Universitas Sriwijaya, and mathematics teachers in the part of the content, constructs, and language. While the one-to-one and small group stage involved three students with high, medium, and low-ability. The revision results at that stage can be seen in Figure 2.

Figure 2. Revision results of the jumping task after validation
Based on the comment at the expert reviews and one-to-one stage, the researchers decide to revise the sharing and jumping task. On the sharing task the researchers change the name of country with the familiar on student’s thinking. The researchers also change the question, so the student can be explore their answer. On the jumping task the researchers change the picture of pin formation and revise the question. The experts said that if the figure of pin formation was seen from above, it would make it easier for students to think and imagine the direction of the bowling ball.

In the small group stage, students were first asked to solve the problem individually before discuss with their friends in the group. Then, if they have difficulties to solve the problem, they might ask for help from their friends. The norm is by saying "Please Teach Me" and then the students who asked for help must teach it. The jumping tasks can create learning activities among students such as dialogue, interaction, and effective collaboration (Sato, 2014; Putri & Zulkardi, 2019).

In the field test stage, almost students couldn’t solve the problems well. It’s reflected in Figure 2 that students are confused and scratching his heads while trying to solve the problem. But, after they collaborated and ask for help with their friend who understands, the student can explain it well. The analysis results of PISA-like mathematics task using football context is as follows in Figure 4.
Each team in a group will compete once with other team

Group B: So, Uzbekistan
Uzbekistan VS Hong Kong
Hong Kong VS Bangladesh
Bangladesh VS Afghanistan
Afghanistan VS Hong Kong

So, there are 6 matches in group A

Hong Kong Bangladesh Afghanistan Uzbekistan
Uzbekistan Uzbekistan Uzbekistan Uzbekistan
Hong Kong Bangladesh Afghanistan Uzbekistan
Hong Kong Hong Kong Hong Kong Hong Kong
Hong Kong Afghanistan Uzbekistan
Bangladesh Bangladesh Bangladesh Bangladesh
Hong Kong Afghanistan Afghanistan Afghanistan
Afghanistan Afghanistan Afghanistan Afghanistan
Hong Kong Bangladesh Afghanistan Uzbekistan

Total of matches: 6 times. Because every country will compete once with others country.

(a) (b)

Figure 4. Students’ answer sheet of sharing task

Based on the Figure 4 (a), the student make the assumption that each country will compete once with other countries, so that there are 6 matches in group A. In the Figure 4 (b) the students make the prediction all the matches that will be held from each country, after that he eliminate the repetitive matches, so there are 6 matches. Accordance with Murtafiah and Lukitasari (2019), the learning should be emphasized in the development of student thinking.

Almost students can solve the sharing task using their communication skills. The students writing down the process of achieving a solution by making a list of teams that will compete based on existing rules to get 6 matches correctly and completely. Students can also make conclude of mathematical results accordance with the existing situation, namely the number of matches that will be held in group A. Meanwhile, the analysis result of jumping task using bowling context is as follows in Figure 5.
Figure 5. Students’ answer sheet of jumping task

(a) The direction of the ball is in the middle. First, the ball hits pin number 1 and then the others pin will fall. So the player can get strike.

(b) The player can get the strike if the ball shoot between pin number 1 and 3 because that is can affects and hits all the pin, so the player easy to get strike.

Figure 5 (a) student makes a mistake possible next happen of the problem. Students make predictions that the ball should be thrown toward the center of the pin so that players get a strike. In Figure 5 (b), the student with high ability makes a reflection, argumentation, and reasoning when solving the problems. The student answer that the player must shot the ball between pin 1 and 3 so it will hit another pin on end. The students that have good reasoning ability can solve the problems correctly and adequately (Ahyan, et al. 2014; Permatasari, et al. 2018).

After the field test, the researchers and teachers doing a reflection about the lesson. This stage aims to find the advantages and disadvantages of the implementation of learning that has been carried out. The model teacher as an object starts the discussion by conveying her impressions, experiences, constraints, and opinions regarding the implementation of the learning (Nuraida & Putri, 2018). Furthermore, observers explain what they find during the lesson. From the reflection, it can be concluded that during solve the PISA-like problems, students working collaboratively in their groups although they still have a mistake. Students with low-ability were guided and connected to ask problems to their peers with high-ability (Putri & Zulkardi, 2018). Accordance with Sato (2014), the students have already learned in their groups.

Based on the result of the interviews with some students, they felt happy and interested to solve problems such as PISA-like mathematics problems using Asian Games contexts such as football and bowling. The students also said that developed problems could help them improve their mathematical thinking. The use of context in mathematics learning was very important because it could present the abstract mathematical problems to the form of representation that was easily understood by students (Permatasari, et al. 2018; Fajriyah, et al. 2017; Yansen, et al. 2019).
CONCLUSION

This research has produced mathematics PISA-like problems using the Asian Games context, which valid and practical. The validity reflected based on the comment of experts and students in the on-to-one stage, in terms of content has according to the domain of mathematics literacy in PISA. In terms of construct, the problem has been accorded with characteristics of the PISA problem level and abilities of the target group. In terms of language, the problems in accordance with enhanced spelling and didn’t have a variety of meanings. The practically reflected from the small group stage, the problem could be understood as learning uncertainty and data, and easy to use. The potential effect of students’ answers when they were solving PISA-like problems in uncertainty and data content. Especially in communication, representation, and mathematization. Also, through lesson study and design research can make students collaborate well so that mathematics learning becomes meaningful.

ACKNOWLEDGMENTS

We would like to thank to the Directorate of Research and Community Service, Directorate General of Higher Education, The Ministry of Education and Culture for their support in funding this research through the Hibah Pasca 2018.

REFERENCES


