MASPARI JOURNAL Juli 2020, 12(2):1-13

KONSENTRASI MIKROPLASTIK PADA KERANG MANILA Venerupis philippinarum DI PERAIRAN MACCINI BAJI, KECAMATAN LABAKKANG, KABUPATEN PANGKAJEN KEPULAUAN, SULAWESI SELATAN

MICROPLASTIC CONCENTRATION ON MANILA CLAM Venerupis philippinarum IN MACCINI BAJI WATERS, LABAKKANG DISTRICT, PANGKAJENE KEPULAUAN REGENCY, SOUTH SULAWESI

Amelia Wahdani¹⁾, Khusnul Yaqin*²⁾, Nita Rukminasari²⁾, Suwarni²⁾, Nadiarti²⁾, Dwi Fajriyati Inaku²⁾, dan Liestiaty Fachruddin²⁾

Mahasiswa Program studi Manajemen Sumber Daya Perairan, Departemen Perikanan, Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, Makassar, Indonesia
 Program studi Manajemen Sumber Daya Perairan, Departemen Perikanan, Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, Makassar, Indonesia Email: khusnul@gmail.com

Registrasi: 12 Desember 2019; Diterima setelah perbaikan: 10 Juni 2020 Disetujui terbit : 20 Juni 2020

ABSTRAK

Mikroplastik di perairan menjadi permasalahan yang cukup serius bagi organisme perairan. Organisme *filter feeder* seperti kerang memiliki resiko yang cukup besar untuk mengakumulasi mikroplastik ke dalam tubuhnya. Salah satu jenis organisme tersebut ialah kerang manila (Venerupis philippinarum) yang banyak terdapat di Perairan Maccini Baji, Kecamatan Labakkang, Kabupaten Pangkajene Kepulauan, Sulawesi Selatan. Penelitian ini bertujuan untuk mengetahui keberadaan dan konsentrasi mikroplastik yang terdapat pada daging kerang manila (Venerupis philippinarum). Pengambilan sampel kerang dilakukan dengan metode sampling acak berlapis (stratified random sampling), sehingga diperoleh sampel sebanyak 118 ekor. 118 sampel kerang manila tersebut kemudian dibagi menjadi tiga kelompok ukuran panjang cangkang kerang yaitu kelas A (3,11 - 3,86 cm), kelas B (3,87 - 4,82 cm), kelas C (4,83 - 6,01 cm). Pengamatan partikel mikroplastik dilakukan dengan menggunakan mikroskop stereo. Hasil pengamatan menunjukkan sebanyak 61 sampel (51,69%) kerang manila mengandung partikel mikroplastik. Mikroplastik yang ditemukan berbentuk fiber dan fragmen, dengan warna dominan biru, hitam, dan transparan. Ukuran mikroplastik yang ditemukan berkisar antara 0,090 - 4,919 mm. Nilai rata-rata konsentrasi mikroplastik pada masing-masing kelompok ukuran panjang cangkang kerang secara berurutan yaitu 0,6129 item/g, 0,6303 item/g, dan 0,2198 item/g.

Kata kunci: Fiber, kerang manila, konsentrasi mikroplastik, Maccini Baji, *Venerupis philippinarum.*

ABSTRACT

Microplastic in aquatic habitat has become quite a serious problem for aquatic organisms. Filter feeder organisms such as clam have a considerable risk of accumulating microplastics into their bodies. One of the filter feeder biotas in the manila clam (Venerupis philippinarum), which is widely found in Maccini Baji Waters, Labakkang District, Pangkajene Kepulauan Regency, South Sulawesi. This study aims to determine the presence and concentration of microplastics in manila clam (Venerupis philippinarum). Sampling was performed by using a stratified random sampling method. One hundred and eight samples of manila clams were divided into three lengths of shell groups, namely class A (3.11 - 3.86 cm), class B (3.87 - 4.82 cm), class C (4.83 - 6, 01 cm). The observations showed as many as 61 samples of manila clam containing microplastic particles. The form of microplastic found in the clam was fiber and fragment, with dominant colors being blue, black, and transparent. Microplastic sizes ranged from 0.090 to 4.919 mm. The average value of microplastic concentrations in each group of shell length measurements were 0,6129 item/g, 0,6303 item/g, and 0,2198 item/g, respectively.

Keywords: Fibre, manila clam, Maccini Baji, microplastic concentration, Venerupis philippinarum.

1. PENDAHULUAN

Sampah plastik menjadi telah ancaman besar dalam kehidupan bumi baik terhadap manusia atau organisme yang hidup di darat ataupun di lautan. Kekhawatiran terhadap sampah plastik terhadap ekosistem perairan di seluruh dunia sudah pada tahap kritis. Sampah plastik telah ditemukan hampir di seluruh perairan di dunia ini, termasuk di Indonesia. Berdasarkan hasil penelitian Jambeck et al. (2015), bahwa sampah plastik yang diproduksi di Indonesia mencapai 0,48-1,29 juta ton/tahun. Meningkatnya jumlah limbah plastik yang dihasilkan dapat disebabkan karena semakin tingginya jumlah populasi penduduk aktivitas masyarakat vang memanfaatkan plastik.

Kekhawatiran lain yang muncul akibat sampah plastik yang masuk ke perairan yaitu adanya partikel mikroplastik. Mikroplastik didefinisikan sebagai partikel plastik yang memiliki ukuran kurang dari 5 mm (Boucher & Friot, 2017). Keberadaan mikroplastik di perairan dapat berdampak pada

lingkungan, bahkan manusia. Partikel mikroplastik dapat menyebar seluruh perairan, baik pada permukaan air, kolom air, maupun mengendap pada sedimen, tergantung berat jenis dari partikel mikroplastik tersebut. Ukurannya yang kecil membuat mikroplastik sering dianggap sebagai makanan oleh hewan-hewan seperti ikan dan bivalvia. Masuknya partikel mikroplastik ke saluran pencernaan berpotensi membawa hewan air partikel tersebut masuk ke piramida makanan hingga ke tingkat trofik tertinggi.

Perairan Maccini Baji terletak di Labakkang, Kabupaten Kecamatan Pangkajene Kepulauan, Sulawesi Selatan. Pada Perairan Maccini Baji terdapat berbagai aktivitas masyarakat yang beresiko sebagai sumber limbah plastik di perairan, seperti aktivitas rumah tangga, aktivitas penangkapan, aktivitas budidaya rumput laut, dan juga aktivitas penyeberangan ke Pulau Cambang-Cambang, Pulau Saugi, Pulau Satando, dan beberapa pulau lainnya. Di perairan ini, terdapat 2 spesies kerang

yang dominan, diantaranya kerang hijau dan kerang manila. Kerang manila (Venerupis philippinarum) salah satu objek mata pencaharian nelavan di daerah ini. Kerang ini menjadi salah satu bahan pangan karena memiliki harga yang cukup Rp4.000,00/kg. terjangkau. vaitu Kerang manila hidup dengan cara membenamkan diri pada substrat berpasir halus maupun berlumpur, dan termasuk organisme filter feeder (Shean, 2011). Sebagai organisme filter feeder, kerang manila memperoleh makanannya dengan cara menyaring partikel materi organik fitoplankton yang tersuspensi dalam air. Oleh karena itu, kerang manila memiliki resiko terpapar berbagai polutan dari air laut dan terakumulasi dalam tubuhnya. Namun, hingga saat ini masih kurang ditemukan penelitian tentang kandungan mikroplastik pada kerang manila.

Berdasarkan uraian di atas, perlu dilakukan penelitian untuk membuktikan keberadaan partikel mikroplastik dalam kerang manila, dan karakteristik mengetahui konsentrasi mikroplastik pada kerang manila (Venerupis philippinarum) di Perairan Maccini Baji, Kecamatan Labakkang, Kabupaten Pangkajene Kepulauan, Sulawesi Selatan.

2. METODE PENELITIAN Tempat dan Waktu Penelitian

Penelitian ini dilaksanakan pada bulan Juli-September 2019. Lokasi pengambilan sampel bertempat di Dusun Maccini Baji, Kecamatan Labakkang, Kabupaten Pangkajene Kepulauan, Sulawesi Selatan.

Prosedur Penelitian Survei Awal

Survei dilakukan awal untuk menentukan lokasi pengambilan sampel. Pengambilan titik lokasi pengambilan sampel dilakukan dengan menggunakan GPS (Global Positioning System). Selain itu juga dilakukan pengamatan di sekitar lokasi terkait aktivitas masyarakat yang berhubungan dengan perairan.

Pengambilan Sampel Biota

Pengambilan sampel dilakukan satu kali dan menggunakan teknik stratified random sampling (sampling berlapis). Stratified random sampling merupakan proses pengambilan sampel melalui proses pembagian populasi kedalam strata, memilih sampel acak sederhana dari setiap stratum, dan menggabungkannya ke dalam sebuah sampel untuk menaksir parameter populasinya. Sampel dikumpulkan kemudian diidentifikasi spesiesnya. Setelah sampel terkumpul, sampel dimasukkan ke cool box dan dibawa ke Laboratorium Perikanan Universitas Hasanuddin untuk dianalisis lebih lanjut. Sampel dimasukkan ke dalam lemari pendingin selama proses persiapan analisis (Khoironi et al., 2018). Untuk menentukan iumlah sampel vang dibutuhkan. terlebih dahulu sampel dibagi kedalam 3 kelas ukuran panjang cangkang kerang berdasarkan metode penentuan kelas dengan logaritma panjang cangkang terbesar dan terkecil dari sampel kerang. Kemudian kelompokkan masing-masing kerang ke dalam kelaskelas yang telah terbentuk. Untuk menghitung iumlah sampel vang dibutuhkan menggunakan rumus Yamane (1967) yaitu:

$$n = \frac{N}{1 + N \left(d^2\right)}$$

Keterangan:

n: jumlah sampel yang dibutuhkan,

N: populasi seluruhnya (jumlah seluruh kerang dalam 3 kelas),

d: tingkat kepercayaan (bisa menggunakan 1%,5%,10%).

Adapun untuk menentukan jumlah sampel tiap kelas menggunakan rumus alokasi proporsional menurut Sugiyono (2007) yaitu:

$$ni = \frac{Ni}{N} x n$$

Keterangan:

ni : jumlah sampel yang dibutuhkan pada kelas i,

n: jumlah sampel yang dibutuhkan,

N: populasi seluruhnya (jumlah seluruh kerang dalam 3 kelas).

Ni: populasi pada kelas i.

Pengukuran Karakteristik Morfologi Sampel

Sampel biota yang telah diukur dikumpulkan karakteristik morfologinya yaitu panjang, tinggi, dan lebar cangkang dengan menggunakan iangka sorong (Gambar 1). Semua kemudian dibedah sampel memisahkan daging kerang dan cangkangnya. **Bobot** daging dan cangkang kemudian ditimbang masingmasing menggunakan timbangan digital. Daging kerang yang telah ditimbang kemudian segera dimasukkan ke botol sampel lalu ditutup. Hal ini dilakukan untuk menjaga sampel dari kontaminasi udara luar.

Gambar 1. Cangkang kerang manila. a. Panjang; b. Tinggi; c. Lebar.

Preparasi Sampel Biota

Sebelum dilakukan identifikasi partikel mikroplastik, bahan-bahan organik pada kerang harus dihilangkan dan dipisahkan dari mikroplastik. Cara yang dilakukan yaitu dengan menambahkan pelarut basa berupa KOH 10% pada masing-masing botol sampel yang telah berisi daging kerang. Pemilihan KOH sebagai bahan pelarut disebabkan

karena sifatnya yang lebih efektif menghilangkan bahan organik daripada pelarut lainnya seperti H₂O₂, serta lebih bagus dalam mempertahankan kondisi mikroplastik (Ding *et al.*, 2018). Setelah itu, sampel didiamkan selama kurang lebih 2 minggu agar bahan organik kerang benar-benar hilang. Preparasi sampel biota harus dilakukan dalam suhu ruangan.

Pengamatan Mikroplastik

Pengamatan mikroplastik kerang dimulai dengan menuangkan larutan sampel ke cawan petri dan dengan diamati menggunakan ldentifikasi mikroskop stereo. mikroplastik menggunakan metode observasi visual, yaitu dengan melihat bentuk, ukuran, dan warna dari partikel mikroplastik. Bentuk dan warna mikroplastik dapat dilihat langsung dengan pengamatan bawah mikroskop. Adapun untuk mengetahui ukuran dari mikroplastik menggunakan aplikasi ImageJ. Mikroplastik yang telah ditemukan difoto kemudian diukur panjangnya melalui aplikasi tersebut.

Variabel Penelitian Konsentrasi Mikroplastik

Konsentrasi mikroplastik pada kerang ialah kandungan mikroplastik yang terdapat pada daging kerang, dan dapat dinyatakan dalam satuan item/g. Konsentrasi mikroplastik dapat dihitung dengan menggunakan rumus Khoironi *et al.* (2018):

$$Konsentrasi \ Mikroplastik \ \left(\frac{item}{g}\right) = \frac{jumlah \ mikroplastik \ pada \ kerang}{berat \ basah \ daging \ kerang}$$

Hasil perhitungan konsentrasi tiap kerang kemudian akan dibandingkan per kelas ukuran untuk melihat perbedaannya, dan disajikan melalui grafik.

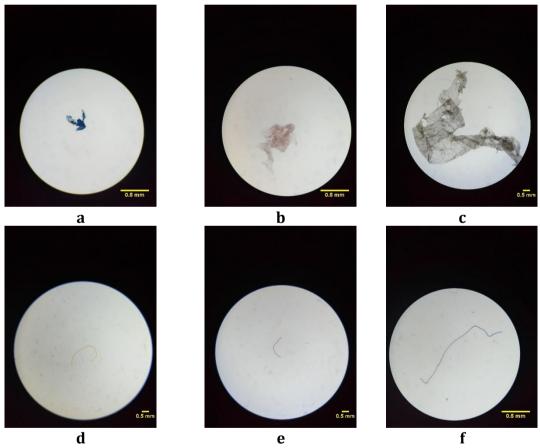
Frekuensi Kehadiran

Frekuensi kehadiran (FK) mikroplastik pada sampel kerang ialah persentase jumlah kerang yang teridentifikasi mengandung mikroplastik. Frekuensi kehadiran dihitung berdasarkan rumus frekuensi kehadiran Krebs (2014), yaitu:

$$FK = \frac{\text{jumlah kerang yang terdapat mikroplastik}}{\text{jumlah total kerang yang diamati}} \ x \ 100\%$$

Hasil perhitungan frekuensi kehadiran akan disajikan dalam bentuk grafik dan dijelaskan secara deskriptif.

Analisis Data


analisis **Ienis** statistika vang digunakan untuk menganalisis konsentrasi mikroplastik yaitu uji one way ANOVA. Analisis ini untuk menguji perbedaan konsentrasi mikroplastik yang telah didapatkan pada setiap kelompok ukuran panjang cangkang kerang. Sebelum dilakukan uji one way ANOVA terlebih dahulu data diuji normalitas dan homegenitasnya. Jika data berdistribusi normal dan homogen, maka digunakan one way ANOVA parametrik. Namun jika data tidak normal, maka data ditransformasi lalu diuji kembali normalitas dan homogenitasnya. Jika data telah normal dan homogen setelah ditransformasi, maka dilanjutkan dengan uji one way ANOVA parametrik. Akan tetapi jika tetap tidak terdistribusi normal dan homogen, maka data diuji dengan one way ANOVA non-parametrik. Analisis data dilakukan menggunakan aplikasi Ms. Excel dan Graphad Prism v. 5. 03.

3. HASIL DAN PEMBAHASAN

a. Bentuk, Ukuran dan Warna Mikroplastik

Hasil pengamatan partikel mikroplastik pada sampel kerang menunjukkan bahwa pada setiap kelompok ukuran panjang cangkang kerang ditemukan beberapa kerang yang mengandung partikel mikroplastik (Tabel 1). Partikel mikroplastik yang ditemukan terdiri atas dua bentuk, vaitu fiber dan fragmen (Gambar 2). Tabel 1. Jumlah sampel kerang yang mengandung mikroplastik

Kelas Ukuran Panjang Cangkang Kerang	Jumlah sampel kerang (individu)	Jumlah kerang yang mengandung mikroplastik (individu)	Jumlah kerang yang mengandung mikroplastik bentuk fiber dan fragmen (individu)		
· ·			Fiber	Fragmen	
A (3,11-3,86 cm)	23	11	10	2	
B (3,87-4,82 cm)	42	31	30	7	
C (4,83-6,01 cm)	53	19	19	4	
Total	118	61	59	13	

Gambar 2. Bentuk mikroplastik yang ditemukan pada sampel kerang *Venerupis philippinarum.* (a-c) mikroplastik berbentuk fragmen, (d-f) mikroplastik berbentuk fiber

Aktivitas masyarakat di sekitar Perairan Maccini Baji menghasilkan berbagai macam limbah rumah tangga. Namun karena belum adanya pengelolaan sampah yang baik, maka limbah-limbah tersebut dibuang langsung ke perairan. Tidak adanya pemilahan jenis sampah juga

mengakibatkan semua jenis sampah aktivitas manusia masuk perairan, termasuk sampah plastik. Sampah plastik makro vang masuk ke perairan kemudian akan terdegradasi meniadi mikroplastik. Sebagian besar masyarakat di sekitar dermaga bekerja sebagai nelayan dan petani rumput laut. Aktivitas nelavan seperti penangkapan menggunakan berbagai tangkap yang berasal dari tali serta para rumput petani laut vang menggunakan tali dan botol plastik dalam produksi rumput laut dapat dikatakan sebagai salah satu penyumbang mikroplastik di perairan. Aktivitas penyeberangan kapal sekitar dermaga juga sangat riskan akan potensi cemaran mikroplastik.

Hasil penelitian menunjukkan bahwa dalam tubuh kerang manila mengandung partikel mikroplastik. Hal disebabkan karena kerang merupakan organisme filter feeder, yaitu organisme yang cara makannya memasukkan apa saja yang ada di sekitarnya, termasuk air dan sedimen. Oleh karenanya berbagai jenis bahan pencemar yang ada di lingkungan perairan dapat masuk ke dalam tubuh kerang, termasuk partikel mikroplastik. Penyebaran mikroplastik di perairan tergantung pada beberapa faktor. diantaranya 1) distribusi ukuran. bentuk, dan jenis polimer tertentu, 2) jenis kerapatan partikel mikroplastik, dan 3) variasi arus perairan (Lusher et al., 2012). Mikroplastik berasal dari berbagai polimer macam dengan densitas juga beragam. yang

Mikroplastik dengan densitas yang lebih tinggi akan mengendap di dasar perairan. Woodall et al. (2014) telah menemukan bahwa jumlah mikroplastik yang ditemukan di dasar laut dalam sebanyak empat kali jumlah yang diamati di permukaan. Hal ini menjadi penyebab biota yang menetap di dasar seperti kerang-kerangan akan lebih berpotensi untuk terkontaminasi mikroplastik.

Mikroplastik dengan bentuk fiber adalah bentuk yang dominan di setiap kelompok ukuran panjang cangkang kerang (Tabel 2). Jumlah terbanyak mikroplastik berbentuk fiber terdapat kelompok ukuran panjang pada cangkang kerang kelas B yaitu sebanyak 49 partikel mikroplastik, dan jumlah mikroplastik berbentuk fiber terendah terdapat pada kelompok ukuran kelas A yaitu 15 partikel. Adapun mikroplastik bentuk fragmen memiliki dengan jumlah terbanyak 9 partikel dan berada pada kelompok ukuran panjang 3,87 -4.82 cm (kelas B), sedangkan jumlah fragmen terendah yaitu sebanyak 3 partikel berada pada kelompok ukuran 3,11 - 3,86 cm (kelas A). Selain pengamatan terhadap bentuk. karakteristik mikroplastik juga dapat dilihat berdasarkan warna. Hasil pengamatan menunjukkan terdapat beberapa kelompok warna dari partikel mikroplastik yaitu biru, hitam, transparan, merah, kuning, dan ungu. Warna yang dominan ditemukan di kelompok ukuran semua panjang cangkang kerang yaitu warna biru, hitam dan transparan (Tabel 3).

Tabel 2. Jumlah mikroplastik bentuk fiber dan fragmen yang ditemukan pada sampel kerang di berbagai ukuran panjang cangkang kerang

Jumlah Mikroplastik pada **Jumlah** total Kelas Ukuran Panjang berbagai bentuk (item) mikroplastik Cangkang Kerang Fiber Fragmen (item) A (3,11-3,86 cm) 15 3 18 B (3,87-4,82 cm) 48 10 58 C (4,83-6,01 cm) 30 34 4 Total 93 17 110

Tabel 3. Jumlah total partikel mikroplastik berdasarkan warna pada berbagai

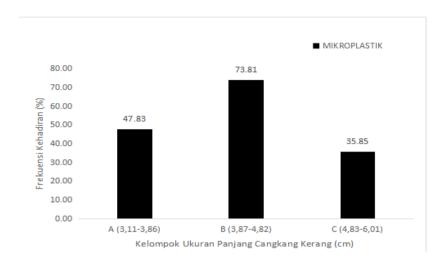
kelompok ukuran panjang cangkang kerang									
Kelas	Bentuk mikroplastik	Jumlah Mikroplastik di berbagai warna (item)							
ukuran panjang cangkang kerang		Biru	Merah	Hitam	Transparan	Kuning	Ungu	Jumlah total mikroplastik (item)	
A (3,11-	Fiber	6	-	4	4	-	1	15	
3,86 cm)	Fragmen	-	-		3	-	-	3	
B (3,87-	Fiber	31	4	10	4	-	-	49	
4,82 cm)	Fragmen	1	2	2	4	-	-	9	
C (4,83-	Fiber	17	9	1	1	2	-	30	
6,01 cm)	Fragmen	-	-	1	3	-	-	4	
Total		55	15	18	19	2	1	110	

Partikel mikroplastik yang ditemukan pada setiap kelompok ukuran panjang cangkang kerang memiliki rentang ukuran panjang mikroplastik yang berbeda-beda. Mikroplastik yang ditemukan terdiri atas mikroplastik besar (1 mm - ≤5 mm) dan mikroplastik kecil (1 µm -≤1000 µm). Pada kelas A, kisaran panjang partikel mikroplastik yaitu 0,125 - 4,919 mm. Pada kelas B, memiliki kisaran panjang partikel mikroplastik yaitu 0,090 - 2,534 mm. Adapun pada kelas C, panjang partikel mikroplastik yang ditemukan berkisar antara 0,400 - 4,757 mm.

Berdasarkan hasil pengamatan seluruh sampel kerang, ditemukan bahwa terdapat dua bentuk mikroplastik yang ditemukan, yaitu fragmen dan fiber (Tabel 6). Fiber mikroplastik adalah bentuk vang dominan ditemukan pada sampel kerang. Total partikel mikroplastik berbentuk fiber yang ditemukan di kelompok ukuran semua paniang cangkang kerang ialah 93 partikel (84%). Penemuan ini juga senada dengan hasil penelitian (Davidson & Dudas, 2016) yang menemukan bahwa fiber merupakan jenis mikroplastik yang dominan pada kerang manila di Kolumbia, Inggris vaitu sebesar 90%.

mikroplastik berbentuk Persentase fiber yang tertinggi juga ditemukan di daerah pesisir Singapura vaitu sebanyak 72% (Nor & Obbard, 2014). Fiber merupakan mikroplastik yang berbentuk panjang dan tipis, dapat berasal dari serat pakaian, tali temali, alat-alat penangkapan seperti pancing dan jaring tangkap (Claessens et al., 2011; Browne et al., 2011; Nor & Obbard. 2014).Fragmen berupa potongan kecil plastik yang memiliki struktur yang kaku, bentuknya tidak beraturan (Rochman et al., 2019). Fragmen dapat berasal dari degradasi limbah plastik, seperti alat pertanian, bahan kemasan plastik, dan kantong (Antunes et al., 2013). plastik Keberadaan mikroplastik berbentuk fiber dan fragmen mengindikasikan kecenderungan keberadaan adanya mikroplastik sekunder di perairan tersebut.

Warna mikroplastik dapat memberikan informasi tentang sumber sampah laut. atau kondisi dari mikroplastik (Ryan et al., 2019). Partikel dengan warna yang menarik juga memiliki kemungkinan besar digolongkan untuk sebagai mikroplastik, sehingga memudahkan pemisahan mikroplastik dengan partikel non-plastik (Hidalgo-ruz et al., 2012). Terdapat tiga warna dominan yang ditemukan pada sampel, yaitu biru, hitam dan transparan (Tabel 3). Warna biru menjadi warna dominan yang ditemukan di setiap kelompok ukuran panjang cangkang kerang. Warna hitam dapat mengindikasikan banyaknya kontaminan yang terserap mikroplastik dan dalam partikel organik lainnya, karena mikroplastik berwarna hitam memiliki kemampuan menyerap polutan yang tinggi. Warna transparan mengindikasikan lamanya mikroplastik tersebut mengalami

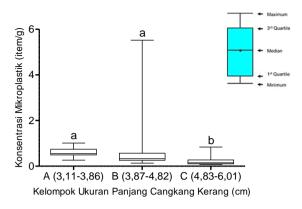

fotodegradasi oleh sinar UV (Hiwari *et al.*. 2019).

Ukuran mikroplastik vang teridentifikasi pada setiap kelompok cangkang panjang ukuran memiliki rentang paniang mikroplastik vang berbeda-beda. Ukuran minimum mikroplastik yang dapat ditemukan vaitu 0,090 mm, sedangkan panjang maksimum ialah 4,919 mm. Menurut Claessens et al. (2013) fragmentasi plastik berukuran makro menjadi mikro disebabkan karena radiasi sinar ultraviolet, gaya mekanik dari gelombang air laut, bahan yang bersifat oksidatif dari plastik, serta sifat hidrolitik dari air laut.

b. Frekuensi Kehadiran Mikroplastik

Frekuensi kehadiran mikroplastik jumlah kerang yang menunjukkan teridentifikasi mengandung partikel mikroplastik. Berdasarkan hasil perhitungan, dapat diketahui bahwa frekuensi persentase kehadiran mikroplastik tertinggi berada pada yaitu sebanyak 73,81%. В Sedangkan kelas dengan persentase kehadiran frekuensi mikroplastik terendah berada pada kelas C dengan persentase sebesar 35,85%. Kelas A memiliki persentase frekuensi kehadiran mikroplastik sebesar 48%. Secara keseluruhan, persentase total frekuensi kehadiran mikroplastik pada semua kelompok ukuran panjang cangkang kerang vaitu sebanyak 51,69%. Persentase frekuensi kehadiran mikroplastik pada kelas A yaitu sebesar 48%, artinya dari 23 sampel dalam kelas tersebut, sebanyak telah ditemukan 11 sampel mikroplastik. Pada kelas B, persentase frekuensi kehadiran mikroplastik yaitu sebesar 73,81%, artinya dari 42 sampel dalam kelas tersebut, sebanyak 31 sampel ditemukan mikroplastik.

Sedangkan pada kelas C dengan persentase sebesar 35,85%, sebanyak 19 sampel dari 53 sampel telah ditemukan mikroplastik. Persentase frekuensi kehadiran mikroplastik pada setiap kelompok ukuran panjang cangkang kerang dapat dilihat pada Gambar 3.



Gambar 3. Persentase frekuensi kehadiran mikroplastik pada berbagai kelompok ukuran panjang cangkang kerang

Frekuensi kehadiran mikroplastik tertinggi pada kelompok ukuran panjang cangkang kerang kelas B (73,81%) dan kelas C dengan frekuensi mikroplastik terendah (35,85%). Total persentase frekuensi kehadiran mikroplastik pada semua kelompok ukuran panjang cangkang kerang yaitu sebanyak 51,69%. Artinya setengah dari populasi kerang yang dijadikan sampel telah ditemukan partikel mikroplastik.

c. Konsentrasi Mikroplastik pada Kerang

Data konsentrasi mikroplastik pada kerang dianalisis dengan uji statistik one way ANOVA non parametrik. Hasil data analisis statistik konsentrasi mikroplastik pada kerang dapat dilihat pada Gambar 4. Berdasarkan gambar tersebut dapat diketahui bahwa konsentrasi mikroplastik kerang pada kelas A tidak berbeda nyata dengan kelas B dan berbeda nyata dengan kelas C. Sedangkan kelas B berbeda nyata kelas Nilai dengan C. rata-rata konsentrasi mikroplastik pada masingmasing kelompok ukuran panjang cangkang kerang secara berurutan vaitu 0,6129 item/g, 0,6303 item/g, dan 0,2198 item/g.

Gambar 4. Konsentrasi mikroplastik di berbagai kelompok ukuran panjang cangkang kerang (X±SE,N=118). Simbol huruf yang berbeda menunjukkan perbedaan yang nyata secara statistik (p<0,05)

Hasil analisis konsentrasi mikroplastik pada Gambar menunjukkan konsentrasi mikroplastik kerang pada berbagai kelompok ukuran panjang cangkang kerang. Kelas A tidak berbeda nyata dengan kelas B dapat disebabkan karena rentang ukuran panjang cangkang kerang yang tidak terlalu jauh yaitu pada kisaran 3-4 cm. Nilai rata-rata konsentrasi mikroplastik tertinggi terdapat pada kelas B dengan ukuran 3,87-4,82 cm dan tidak berbeda nyata dengan konsentrasi mikroplastik pada kelas A (3,11-3,86 cm). Takeuchi et al. (2019) mengungkapkan bahwa probabilitas produksi bisus kerang Venerupis philippinarum berkurang dengan meningkatnya ukuran cangkang dan menurunnya kondisi somatik. Hal ini dapat disebabkan karena pada kelas B memiliki ukuran cangkang yang lebih kecil. Kerang dengan ukuran yang kecil lebih sering menetap di permukaan padat seperti kerikil, sedangkan kerang berukuran besar lebih banyak ditemukan di dalam sedimen (FAO, 2009). Berdasarkan penelitian Alam et al. (2019), konsentrasi mikroplastik di perairan lebih tinggi dibandingkan konsentrasi mikroplastik di sedimen. Berdasarkan perbedaan habitat selama

siklus hidup tertentu, maka kerang dengan ukuran yang lebih kecil akan lebih banyak menyaring air dan lebih mudah tercemar mikroplastik yang mengapung di kolom air.

KESIMPULAN

- Kerang manila yang berada di Perairan Maccini Baji, Kecamatan Labakkang, Kabupaten Pangkajene Kepulauan teridentifikasi mengandung mikroplastik.
- 2. Partikel mikroplastik yang ditemukan berupa fiber dan fragmen, dengan warna dominan biru, hitam, dan transparan. Ukuran mikroplastik yang ditemukan berkisar antara 0,090 4,919 mm.
- 3. Frekuensi kehadiran mikroplastik tertinggi berada pada kelompok ukuran panjang cangkang kerang 3,87-4,82 cm (kelas B) yaitu sebanyak 73,81%. Sedangkan frekuensi terendah berada pada kelas C (4,83-6,01 cm) dengan persentase sebesar 35,85%.
- 4. Konsentrasi mikroplastik dengan nilai rata-rata tertinggi berada pada kelompok ukuran panjang cangkang kerang 3,87-4,82 cm (kelas B), sedangkan konsentrasi terendah

berada pada kelas C (4,83-6,01 cm). Nilai rata-rata konsentrasi mikroplastik tertinggi dan terendah secara berurutan yaitu 0,6303 item/g dan 0,2198 item/g.

DAFTAR PUSTAKA

- Alam FC, Emenda S, Barti SM, Veinardi S. 2019. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). *Chemosphere.* 224:637-645.
- Antunes SC, Freitas R, Figueira E, Gonçalves FJM. 2013. Biochemical effects of acetaminophen in aquatic species: edible clams *Venerupis decussata* and *Venerupis philippinarum*. *Environmental Science and Pollution Research*.
- Boucher J, Friot D. 2017. Primary
 Microplastics in the Oceans: a
 Global Evaluation of Sources.
 International Union for
 Conservation of Nature and
 Natural Resources (IUCN). Gland,
 Switzerland.
- Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R. 2011. Accumulation of microplastic on shorelines woldwide: Sources and sinks. *Environmental Science and Technology*. 45(21):9175–9179.
- Claessens M, Cauwenberghe L Van, Vandegehuchte MB, Janssen CR. 2013. New techniques for the detection of microplastics in sediments and field collected organisms. *Marine Pollution Bulletin*. 70(1–2): 227–233.

- Claessens M, Meester S De, Landuyt L Van, Clerck K De, Janssen CR. 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. *Marine Pollution Bulletin*. 62(10):2199–2204.
- Davidson K, Dudas SE. 2016.
 Microplastic Ingestion by Wild and
 Cultured Manila Clams (Venerupis
 philippinarum) from Baynes
 Sound, British Columbia. Archives
 of Environmental Contamination
 and Toxicology.
- Ding JF, Li JX, Sun CJ, He CF, Jiang FH, Gao FL, Zheng L. 2018. Separation and Identification of Microplastics in Digestive System of Bivalves. *Chinese Journal of Analytical Chemistry*. 46(5): 690–697.
- FAO. 2009. *Ruditapes philippinarum*. Fisheries and Aquaculture Department.
- Hidalgo-ruz V, Gutow L, Thompson RC, Thiel M. 2012. *Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification*. Environmental Science and Technology.
- Hiwari H, Purba NP, Ihsan YN, Yuliadi L PS, Mulyani PG. 2019. Kondisi sampah mikroplastik di permukaan air laut sekitar Kupang dan Rote, Provinsi Nusa Tenggara Timur. *Masyarakat Biodiversitas Indonesia*. 5:165–171.
- Jambeck JR, Gayer R, Wilcox C, Siegler R T, Perryman M, Andrady A, Law LK. 2015. Plastic waste inputs from land into the ocean. *Science*. 347: 768–771.

- Khoironi A, Anggoro S, Sudarno S. 2018.

 The existence of microplastic in Asian green mussels. *IOP Conference Series: Earth and Environmental Science*. 131(1).
- Krebs CJ. 2014. *Ecological Methodology*. Addison-Wesley Educational Publishers, Inc.
- Lusher AL, Mchugh M, Thompson RC. 2012. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. *Marine Pollution Bulletin*.
- Mohamed Nor NH, Obbard JP. 2014. Microplastics in Singapore's coastal mangrove ecosystems. *Marine Pollution Bulletin*. 79(1–2): 278–283.
- Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, Hung C. 2019. Rethinking microplastics as a diverse contaminant suite. *Environmental Toxicology and Chemistry*. 38(4): 703–711.
- Ryan PG, Turra A, Galgani F, Kershaw PJ. 2019. *Guidelines for The Monitoring and Assessment of Plastic Litter In The Ocean Reports and Studies* 99. GESAMP. United Nations Environment Programme (UNEP).
- Shean R. 2011. *Venerupis philippinarum,* Japanese littleneck clam. *FISH*. 423: Aquatic Invasion Ecology.
- Sugiyono. 2007. Statistik untuk Penelitian. Penerbit Alfabeta. Bandung.
- Takeuchi S, Honma K, Hirasaka K. 2019.

- Byssus production ability and degree of byssal-gland development in the infaunal clam *Ruditapes philippinarum. Acta Zoological.* 1–12.
- Woodall LC, Sanchez-vidal A, Paterson GLJ, Coppock R, Sleight V, Calafat A, Thompson RC. 2014. The deep sea is a major sink for microplastic debris. *R. Soc. Open Sci.*
- Yamane T. 1967. *Statistics: An Introductory Analysis.* 2nd Ed. New York: Harper and Row.