• https://theoejwilson.com/
  • santuy4d
  • mariatogel
  • santuy4d
  • garuda slot
  • garudaslot
  • https://edujournals.net/
  • nadimtogel
  • https://mitrasehatjurnal.com/
  • slot gacor hari ini
  • g200m
  • https://perpustakaan.stpreinha.ac.id/mahasiswa/
  • https://www.lml.stpreinha.ac.id/lab/
  • https://cursosvirtuales.icip.edu.pe/nice/
  • slot resmi
  • Forecasting the Inequality of Income Distribution in Consequence of the Covid-19 Pandemic | Suparmono | Jurnal Ekonomi Pembangunan

    Forecasting the Inequality of Income Distribution in Consequence of the Covid-19 Pandemic

    Suparmono Suparmono, Anna Partina

    Abstract


    This study aims to forecasting the Covid-19 Pandemic's effect on income inequality distribution in Kulon-Progo Regency during of 2020 to 2028. The study analysis tools utilized forecast are linear and non-linear trend. The historical data use during of 2010 to 2019, data source obtained from Central Bureau of Statistics Yogyakarta in statistical series book of 2020. The findings of forecast result show that the Covid-19 pandemic directly impact on the increased income inequality distribution. The implication is to carry out the process of economic recovery due to the Covid-19 pandemic case by identifying community groups who are vulnerable to decreased income through strengthening social safety nets. In addition, government policies can also optimize the utilization and transportation services to increase farmer exchange rates, because most people work in the agricultural sector.



    Keywords


    Income inequality; Gini Index; Covid-19; Regional economy; Kulon-Progo

    Full Text:

    PDF

    References


    Arndt, C., Davies, R., Gabriel, S., Harris, L., Makrelov, K., Robinson, S., Levy, S., Simbanegavi, W., van Seventer, D., & Anderson, L. (2020). Covid-19 lockdowns, income distribution, and food security: An analysis for South Africa. Global Food Security, 26(May), 100410. https://doi.org/10.1016/j.gfs.2020.100410

    Banerjee, S., Chakrabarti, B. K., Mitra, M., & Mutuswami, S. (2020). On the Kolkata index as a measure of income inequality. Physica A: Statistical Mechanics and Its Applications, 545, 123178. https://doi.org/10.1016/j.physa.2019.123178

    Caldararo. (2020). Pr ep rin t Pr ep t. SSRN Electronic Journal.

    Chaudry, A., & Wimer, C. (2016). Poverty is Not Just an Indicator: The Relationship between Income, Poverty, and Child Well-Being. Academic Pediatrics, 16(3), S23–S29. https://doi.org/10.1016/j.acap.2015.12.010

    Choi, S. (2019). Is the current trend of income inequality sustainable? Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195329

    Domicolo, C., & Mahmoud, H. (2020). Degree-Based Gini Index for Graphs. Probability in the Engineering and Informational Sciences, 34(2), 157–171. https://doi.org/10.1017/S0269964819000044

    Fawaz, F., & Frey, E. (2020). The impact of abundancy of resources and regime type on income inequality: The case of less-developed countries. Kasetsart Journal of Social Sciences, 41(1), 1–7. https://doi.org/10.1016/j.kjss.2018.05.015

    Furman, E., Kye, Y., & Su, J. (2019). Computing the Gini index: A note. Economics Letters, 185, 108753. https://doi.org/10.1016/j.econlet.2019.108753

    Giorgi, G. M., & Gigliarano, C. (2017). the Gini Concentration Index: a Review of the Inference Literature. Journal of Economic Surveys, 31(4), 1130–1148. https://doi.org/10.1111/joes.12185

    Jiwani, S. S., & Antiporta, D. A. (2020). Inequalities in access to water and soap matter for the COVID-19 response in sub-Saharan Africa. International Journal for Equity in Health, 19(1), 10–12. https://doi.org/10.1186/s12939-020-01199-z

    Lau, L. L., Hung, N., Go, D. J., Ferma, J., Choi, M., Dodd, W., & Wei, X. (2020). Knowledge, attitudes and practices of COVID-19 among income-poor households in the Philippines: A cross-sectional study. Journal of Global Health, 10(1). https://doi.org/10.7189/JOGH.10.011007

    Liegghio, M., & Caragata, L. (2020). COVID-19 and Youth Living in Poverty: The Ethical Considerations of Moving From In-Person Interviews to a Photovoice Using Remote Methods. Affilia - Journal of Women and Social Work, 1–7. https://doi.org/10.1177/0886109920939051

    Maroko, A. R., Nash, D., & Pavilonis, B. T. (2020). COVID-19 and Inequity: a Comparative Spatial Analysis of New York City and Chicago Hot Spots. Journal of Urban Health, 461–470. https://doi.org/10.1007/s11524-020-00468-0

    O’Donoghue, C., Sologon, D. M., Kyzyma, I., & McHale, J. (2020). Modelling the Distributional Impact of the COVID-19 Crisis*. Fiscal Studies, 41(2), 321–336. https://doi.org/10.1111/1475-5890.12231

    Patel, J. A., Nielsen, F. B. H., Badiani, A. A., Assi, S., Unadkat, V. A., Patel, B., Ravindrane, R., & Wardle, H. (2020). Poverty, inequality and COVID-19: the forgotten vulnerable. Public Health, 183, 110–111. https://doi.org/10.1016/j.puhe.2020.05.006

    Policardo, L., Sanchez Carrera, E. J., & Risso, W. A. (2019). Causality between income inequality and corruption in OECD countries. World Development Perspectives, 14(February), 100102. https://doi.org/10.1016/j.wdp.2019.02.013

    Power, M., Doherty, B., Pybus, K., & Pickett, K. (2020). How COVID-19 has exposed inequalities in the UK food system: The case of UK food and poverty. Emerald Open Research, 2, 11. https://doi.org/10.35241/emeraldopenres.13539.2

    Progo, B. P. S. K. K. (2020). Kabupaten Kulon-Progo dalam Angka, 2020 Penyediaan Data untuk Perencanaan Pembangunan.

    Robles Aguilar, G., & Sumner, A. (2020). Who are the world’s poor? A new profile of global multidimensional poverty. World Development, 126, 104716. https://doi.org/10.1016/j.worlddev.2019.104716

    Rodela, T. T., Tasnim, S., Mazumder, H., Faizah, F., Sultana, A., & Hossain, M. M. (2020). Economic Impacts of Coronavirus Disease (COVID-19) in Developing Countries. 1–7. https://doi.org/10.31235/osf.io/wygpk

    Simon, L., Choi, S. E., Ticku, S., Fox, K., Barrow, J., & Palmer, N. (2020). Association of income inequality with orthodontic treatment use. Journal of the American Dental Association, 151(3), 190–196. https://doi.org/10.1016/j.adaj.2019.11.021

    Sitthiyot, T., & Holasut, K. (2020). A simple method for measuring inequality. Palgrave Communications, 6(1), 1–9. https://doi.org/10.1057/s41599-020-0484-6

    Sulemana, I., Nketiah-Amponsah, E., Codjoe, E. A., & Andoh, J. A. N. (2019). Urbanization and income inequality in Sub-Saharan Africa. Sustainable Cities and Society, 48(April), 101544. https://doi.org/10.1016/j.scs.2019.101544

    Suryahadi, A., Al Izzati, R., & Suryadarma, D. (2020). Estimating the Impact of Covid-19 on Poverty in Indonesia*. Bulletin of Indonesian Economic Studies, 0(0), 1–34. https://doi.org/10.1080/00074918.2020.1779390

    Tadjoeddin, M. Z., Yumna, A., Gultom, S. E., Rakhmadi, M. F., & Suryahadi, A. (2020). Inequality and violent conflict: new evidence from selected provinces in Post-Soeharto Indonesia. Journal of the Asia Pacific Economy, 0(0), 1–22. https://doi.org/10.1080/13547860.2020.1773607

    Teguh, M. & Bashir, A. (2019). Indonesia’s Economic Growth Forecasting, Sriwijaya International Journal of Dynamic Economics and Business, 3(2), 134-145. https://doi.org/10.29259/sijdeb.v3i2.134-145

    Teka, A. M., Temesgen Woldu, G., & Fre, Z. (2019). Status and determinants of poverty and income inequality in pastoral and agro-pastoral communities: Household-based evidence from Afar Regional State, Ethiopia. World Development Perspectives, 15(February), 100123. https://doi.org/10.1016/j.wdp.2019.100123

    Tolmachev, M. N., Barashov, N. G., Latkov, A. V., & Markov, V. A. (2019). Interregional Inequality of Population Incomes: Problems of Methodology and Estimation in the Russian Federation. SHS Web of Conferences, 62, 09003. https://doi.org/10.1051/shsconf/20196209003

    Webster, F., Connoy, L., Sud, A., Pinto, A. D., & Katz, J. (2020). Grappling with Chronic Pain and Poverty during the COVID-19 Pandemic. Canadian Journal of Pain, 4(1), 125–128. https://doi.org/10.1080/24740527.2020.1766855

    Zhang, Y., & Sun, P. (2020). Study on the diurnal dynamic changes and prediction models of the moisture contents of two litters. Forests, 11(1), 1–15. https://doi.org/10.3390/f11010095




    DOI: https://doi.org/10.29259/jep.v19i1.13187

    Refbacks

    • There are currently no refbacks.


    Creative Commons License
    This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


    Jurnal Ekonomi Pembangunan
    Jalan Raya Palembang-Prabumulih Km. 32
    Jurusan Ekonomi Pembangunan, Fakultas Ekonomi Universitas Sriwijaya
    Indralaya, Sumatera Selatan, Indonesia
    Email: jep.unsri@gmail.com, Tel/Fax : (0711)580231


    p-ISSN: 1829-5843, e-ISSN 2685-0788


    Creative Commons License

    Jurnal Ekonomi Pembangunan by http://ejournal.unsri.ac.id/index.php/jep 

    is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

    Jurnal Ekonomi Pembangunan is Indexed by:

    Logo Google Scholar Unsri  Moraref One Search