• https://theoejwilson.com/
  • santuy4d
  • mariatogel
  • santuy4d
  • garuda slot
  • garudaslot
  • https://edujournals.net/
  • nadimtogel
  • https://mitrasehatjurnal.com/
  • slot gacor hari ini
  • g200m
  • https://perpustakaan.stpreinha.ac.id/mahasiswa/
  • https://www.lml.stpreinha.ac.id/lab/
  • https://cursosvirtuales.icip.edu.pe/nice/
  • slot resmi
  • MATHEMATICAL CONTENT ON STEM ACTIVITIES | Lasa | Journal on Mathematics Education

    MATHEMATICAL CONTENT ON STEM ACTIVITIES

    Aitzol Lasa, Jaione Abaurrea, Haritz Iribas

    Abstract


    In this paper, a number of STEM educational proposals are systematically analyzed from the lens of mathematics education. An extensive innovation project was implemented during the 2019/2020 academic year in a pilot study carried out in Schools and Teacher Training Programs in Navarre (Spain), comprising a bibliographical and source analysis as a previous step to characterize the existing material, and ultimately to design and test STEM projects at different educational levels from the point of view of mathematical education. All activities belong to international publications and widely used and contrasted web repositories, and seize the usual interval of compulsory education, i.e., from the beginning of Primary School (age 6/7) to the end of Secondary School (age 15/16). The findings draw a panorama of STEM activities where mathematics is mostly utilitarian, numbers and units are functionally used to measure quantities of magnitudes, and geometric contents serve the purpose of modeling a technological prototype. As it turns out, some STEM-labelled activities do not fulfill their principles and fundamental purposes. In lower levels, there is a common confusion between STEM activities and science laboratory projects; in higher levels, complex mathematical content could appear. Even though some activities are guided science laboratory projects, it is concluded that most STEM activities have the potential of a-didactical situations, i.e., contexts where students put into practice their personal problem-solving techniques before teachers formalize the mathematical content.

    Keywords


    STEM; Spanish and Portuguese mathematics curriculum; Primary education; Secondary education; Didactical situations in mathematics

    Full Text:

    PDF

    References


    Apsari, R. A., Putri, R. I. I., Sariyasa, Abels, M., & Prayitno, S. (2020). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45-58. https://doi.org/10.22342/jme.11.1.9535.45-58.

    Benjumeda, F. J., & Romero, I. (2017). Ciudad sostenible: un Proyecto para integrar las materias científico-tecnológicas en Secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(3), 621-637.

    Berube, C. T. (2014). STEM and the City: A Report on STEM Education in the Great American Urban Public School System. Charlotte, NC: Information Age Publishing. https://doi.org/10.1002/sce.21201.

    Brousseau, G. (1997). Theory of didactical situations in mathematics. Amsterdam: Kluwer. https://doi.org/10.1007/0-306-47211-2.

    Capraro, R. M., Capraro, M. M., & Morgan, R. (2013). STEM Project-Based Learning. An Integrated Science, Technology, Engineering and Mathematics (STEM) Approach. Rotterdam: Sense Publishers. http://doi.org/10.1007/978-94-6209-143-6

    Chahine, C. I., Robinson, N., & Mansion, K. (2020). Using robotics and engineering design inquiries to optimize mathematics learning for middle level teachers: A case study. Journal on Mathematics Education, 11(2), 319-332. https://doi.org/10.22342/jme.11.2.11099.319-332.

    Education and Culture DG. (2020). EU-HOU. http://www.euhou.net/

    European Schoolnet. (2020). SCIENTIX. http://www.scientix.eu/resources/

    Gras, R., Suzuki, E., Guillet, F., & Spagnolo, F. (2008). Statistical Implicative Analysis. Theory and Applications. London: Springer. http://doi.org/10.1007/978-3-540-78983-3.

    Hegedus, S. C., Laborde, C., Brady, S., Dalton, S. H., Siller, M., Tabach, J., Trgalova, J., & Moreno-Armella, L. (2017). Uses of technology in Upper Secondary Mathematics Education. Springer Open. https://doi.org/10.1007/978-3-319-42611-2_1

    Heinecke, L. L. (2019). STEAM esperimentuak haurrentzat. Elhuyar: Usurbil.

    Hutchinson, S. (2019). ZTIM jarduerak. Ttarttalo: Donostia.

    Laboy-Rush, D. (2011). Integrated STEM Education through Project-Base-Learning. http://www.learning.com

    Lagrange, J.B., & Monaghan, J. (2009). On the adoption of a model to interpret teachers’ use of technology in mathematics lessons. WG7, CERME 6 Conference, Lyon, France.

    Lasa, A. (2019). Proyecto STEM y situación adidáctica [STEM Project and a-didactical situation]. Las matemáticas frente a los desafíos STEM-STEAM. II Seminário Internacional Associação de Professores de Matemática (APM) Portugal – Federación Española de Sociedades de Profesores de Matemáticas (FESPM), Escola Superior de Educação de Santarém (Portugal), 31 May – 2 June.

    Lasa, A., Wilhelmi, M.R., Belletich, O., Abaurrea, J., & Iribas, H. (2020). STEM projects as didactical situations in mathematics: theoretical frame to construct algebraic institutional meanings. The 14th International Congress on Mathematical Education, Shanghai, 12th ?19th July. [POSTPONED].

    Lupianez, J. L., & Cruz, A. (2019). Tareas que fomentan el desarrollo de la competencia STEM. SUMA, 90, 31-39.

    Lupiañez, J. L., & Ruiz, J. F. (2017). Diseño de tareas que promueven el desarrollo de la competencia STEM: los problemas de modelización matemática. http://www.educacontic.es/en/blog/diseno-de-tareas-para-el-desarrollo-de-la-competencia-stem-los-problemas-de-modelizacion

    Morrison, J. (2006). Attributes of STEM education. The Student, the Academy, the Classroom. TIES. https://www.partnersforpubliced.org/uploadedFiles/TeachingandLearning/Career_and_Technical_Education/Attributes%20of%20STEM%20Education%20with%20Cover%202%20.pdf

    NCTM (2000). Principles and standards for school mathematics. Reston: NCTM.

    Nisiyatussani, Ayuningtyas, V., Fathurrohman, M., & Anriani, N. (2018). GeoGebra applets design and development for junior high school students to learn quadrilateral mathematics concepts. Journal on Mathematics Education, 9(1), 27-40. https://doi.org/10.22342/jme.9.1.4162.27-40.

    Rico, L., & Lupiañez, J. L. (2008). Competencias matemáticas desde una perspectiva curricular. Madrid: Anaya.

    Sanders, M. (2009). STEM, STEM education, STEM-mania. The Technology Teacher, 68(4), 20-26. https://www.teachmeteamwork.com/files/sanders.istem.ed.ttt.istem.ed.def.pdf.

    Taub, M. R., Azevedo, R., Bradbury, A., Millar, G., & Lester, J. (2018). Using sequence mining to reveal the efficiency in scientific reasoning during STEAM learning with a game-based learning environment. Learning and Instruction, 54, 93-103. https://doi.org/10.1016/j.learninstruc.2017.08.005.

    Tsupros, N., Kohler, R., & Hallinen, J. (2009). STEM education: A project to identify the missing components. Pennsylvania: Carnegie Mellon University.

    Valencia, S., Méndez, O., & Jiménez, G. (2008). ¿Enseñanza de las ciencias por disciplinas o interdisciplinariedad en la escuela? Tecné, Episteme y Didaxis: Revista de la Facultad de Ciencias y Tecnología, 23, 78-88. https://doi.org/10.17227/ted.num23-150.




    Creative Commons License
    This work is licensed under a Creative Commons Attribution 4.0 International License.


    Journal on Mathematics Education
    Doctoral Program on Mathematics Education
    Faculty of Teacher Training and Education, Universitas Sriwijaya
    Kampus FKIP Bukit Besar
    Jl. Srijaya Negara, Bukit Besar
    Palembang - 30139
    email: jme@unsri.ac.id

    p-ISSN: 2087-8885 | e-ISSN: 2407-0610

    Creative Commons License
    Journal on Mathematics Education (JME) is licensed under a Creative Commons Attribution 4.0 International License.


    View My Stats