PROCESS OF STUDENT’S COGNITION IN CONSTRUCTING MATHEMATICAL CONJECTURE

I Wayan Puja Astawa, I Ketut Budayasa, Dwi Juniati

Abstract


This research aimed to describe process of student’s cognition in constructing mathematical conjecture. The research was a qualitative research using 6 students of Mathematics Education Department of Ganesha University of Education in academic year 2013/2014 as its subjects. Data on the process of student’s cognition in constructing mathematical conjecture were collected using task-assisted interviews. The interviews were carried out twice for triangulation process. Data analysis consisted of data reduction, data display and conclusion drawing. Process of student’s cognition in constructing mathematical conjecture was then explained into 5 different stages, namely understanding problem, exploring problem, formulating conjecture, justifying conjecture, and proving conjecture. In addition, the details of process of student’s cognition were also discussed.

Keywords: process of student’s cognition, mathematical conjecture

Abstrak

Penelitian ini bertujuan untuk mendeskripsikan proses kognisi mahasiswa dalam mengonstruksi konjektur matematika. Penelitian ini merupakan penelitian kualitatif menggunakan 6 orang mahasiswa dari Jurusan Pendidikan Matematika Universitas Pendidikan Ganesha tahun akademik 2014/2015 sebagai subjeknya. Data proses kognisi dikumpulkan dengan wawancara berbantuan tugas. Wawancara dilakukan 2 kali untuk memperoleh data yang kredibel melalui proses triangulasi. Analisis data meliputi pereduksian data, penyajian data dan penarikan simpulan. Proses kognisi dalam mengonstruksi konjektur matematika dijabarkan ke dalam 5 tahap yaitu memahami masalah, mengeksplorasi masalah, merumuskan konjektur, menjustifikasi konjektur, dan membuktikan konjektur. Proses kognisi mahasiswa pada setiap tahap dibahas secara detail.

Kata kunci: proses kognisi siswa, konjektur matematika


Keywords


process of student’s cognition, mathematical conjecture

References


Alibert, L. & Thomas, M. (2002). Research on Mathematical Proof. In David Tall (ed). Advance Mathematical Thinking, 215230. New York: Kluwer Academic Publishers

Canadas, M, C., Deulofeu, J., Figueiras, L., Reid, D. & Yevdokimov, O. (2007). The Conjecturing Process: Perspectives in Theory and Implication in Practice. Journal of Teaching and Learning, 5 (1), 5572, Ontario: Faculty of Education University of Windsor. (online). (http://ojs.uwindsor.ca/ojs/leddy/index.php/JTL/issue/view/56), diakses 22 Maret 2015

Fiallo, J . & Guitierrez, A. (2007). Analysis of Conjectures and Proofs Produced When Learning Trigonometry. In Demetra Pitta-Pantazi and George Philippou (eds). Proceeding of the 5th Congress of the European Society for Reseacrh in Mathematics Education, 2007, 622632. Ciprus: Larnaca

Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31 (4), 396428. Reston: NCTM

Kemendikbud. (2013). Modul Pelatihan Implementasi Kurikulum 2013 SMA Matematika. Jakarta: Badan Pengembangan Sumber Daya Manusia Pendidikan dan Kebudayaan dan Penjaminan Mutu Pendidikan

Lim, H. K., Buendia, G., Kim, O., Cordero, F., & Kasmer, L. (2010). The role of prediction in the teaching and learning of mathematics. International Journal of Mathematical Education in Science and Technology, 41 (5), 595  608. Abington: Taylor and Francis. (online) (http://www.tandfonline.com/toc/tmes20/41/5), diakses 22 Januari 2015

Manizade, A. G. & Lundquist, B. (2009). Learning about Proof by Building Conjectures. In Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.). Proceedings of the 31st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. 2009, 1566 – 1571. Atlanta, GA: Georgia State University

Mazur, B. (1997). Conjecture. Synthese, 111, 197210. Netherlands: Kluwer Academic Publisher

Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis 2nd an Expanded Source book. California: Sage Publication

Morseli, F. (2006). Use of Examples in Conjecturing and Proving: An Exploratory Study. In Novotna, J., Moraova, K., Kratka, M., & Stehlikova, N. (eds). Proceeding 30th Conference of the International Group for the Psychology of Mathematics Educations, 2006, 185192. Prague: PME

NCTM. (2000). Principles and Standards for School Mathematics. Reston VA: NCTM Inc

Norton, A. (2000). Student Conjectures in Geometry. Paper presented at the 24th conference of the international group for the Psychology of Mathematics Education, Hirosima, Japan

Pedemonte, B. (2001). Some Cognitive Aspects of the Relationship between Argumentation and Proof in Mathematics. In van den Heuvel-Panhuizen M. Preceeding of the 25th conference of the international group for the Psychology of Mathematics Education, 2001, Utrech, Netherland

Polya, G. (1945). How to Solve It. Princeton. New Jersey: Princeton University Press

Ponte, J. P., Ferreira, C., Brunheira, L., Oliveira, H., & Varandas, J. (1998). Investigating Mathematical Investigation. In P. Abrantes, J. Porfirio, & M. Baia (Eds.). Les interactions dans la classe de mathematiques: Proceedings of the CIEAEM 49. Pp. 314. Setubal : Ese de Setubal


Refbacks

  • There are currently no refbacks.



Journal on Mathematics Education
Program S3 Pendidikan Matematika FKIP Universitas Sriwijaya
Kampus FKIP Bukit Besar
Jl. Srijaya Negara, Bukit Besar
Palembang - 30139
email: rully.jme@gmail.com

p-ISSN: 2087-8885 | e-ISSN: 2407-0610
Journal on Mathematics Education is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

View My Stats

Indexed in: