LEARNING MATHEMATICAL MODELLING WITH AUGMENTED REALITY MOBILE MATH TRAILS PROGRAM: HOW CAN IT WORK?

Adi Nur Cahyono, Yohanes Leonardus Sukestiyarno, Mohammad Asikin, Miftahudin Miftahudin, Muhammadi Ghozian Kafi Ahsan, Matthias Ludwig

Abstract


The aim of this study is to investigate how an augmented reality mobile math trails program can provide opportunities for students to engage in meaningful mathematical modelling activities. An explorative research design was conducted involving two mathematics teachers and 30 eight grades in Semarang, Indonesia. An Augmented Reality Mobile Math Trails App was created, and several math trail tasks were designed, then students run the activity. Data were gathered by means of participatory observation, interviews, questionnaires, tests, and worksheets. Data analysis began with the organisation, annotation, description of the data and statistic tests. The findings indicate that an educational program was successfully designed, which offered students a meaningful mathematical experience. A mobile app was also developed to support this program. The mobile app with augmented reality features is helpful for students as a tool that bridges the gap between real-world situations and mathematical concepts in problem-solving following the mathematical modelling cycle. The program thus contributes to a higher ability in mathematical modelling. The study identified a link between instrumented techniques in programs and mathematical modelling, as built during the instrumentation process. Further studies are essential for project development and implementation in other cities with different situations and aspects of study.


Keywords


Math Trails; Augmented Reality; Mathematical Modelling; Mobile Learning

Full Text:

PDF

References


Ajanki, A., Billinghurst, M., Gamper, H., Järvenpää, T., Kandemir, M., Kaski, S., Koskela, M., Kurimo, M., Laaksonen, J., Puolamäki, K., Ruokolainen, T., & Tossavainen, T. (2011). An augmented reality interface to contextual information. Virtual Reality, 15, 161-173. https://doi.org/10.1007/s10055-010-0183-5.

Azuma, R.T. (1997). A survey of augmented reality. Presence: Virtual and Augmented Reality, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355.

Banu, S.M. (2012). Augmented reality system based on sketches for geometry education. 2012 International Conference on E-Learning and E-Technologies in Education, ICEEE 2012. https://doi.org/10.1109/ICeLeTE.2012.6333384.

Cahyono, A.N., & Ludwig, M. (2018). Exploring mathematics outside the classroom with the help of GPS-enabled mobile phone application. Journal of Physics: Conference Series, 983(1), 012152. https://doi.org/10.1088/1742-6596/983/1/012152.

Cahyono, A.N. (2018). Learning Mathematics in a Mobile App-Supported Math Trail Environment. Basel: Springer International Publishing. https://doi.org/978-3-319-93245-3.

Cahyono, A.N., & Ludwig, M. (2019). Teaching and learning mathematics around the city supported by the use of digital technology. Eurasia Journal of Mathematics, Science and Technology Education, 15(1), 1–8. https://doi.org/10.29333/ejmste/99514.

Chen, P., Liu, X., Cheng, W., & Huang, R. (2017). A review of using augmented reality in education from 2011 to 2016. In E. Popescu et al. (Eds.), Innovations in Smart Learning (pp. 13-18). Lecture Notes in Educational Technology. Singapore: Springer. https://doi.org/10.1007/978-981-10-2419-1_2.

Christensen, C., & Eyring, H. J. (2011). The Innovative University: Changing the DNA of Higher Education. Forum for the Future of Higher Education, 47-53. https://pdfs.semanticscholar.org/d1d4/7673cd04ad1add857e5cd17a69f51cc52644.pdf?_ga=2.72806419.1414994924.1585378298-1798785769.1585378298.

Drijvers, P., Kodde-Buitenhuis, H., & Doorman, M. (2019). Assessing mathematical thinking as part of curriculum reform in the Netherlands. Educational Studies in Mathematics, 102, 435-456. https://doi.org/10.1007/s10649-019-09905-7.

Greefrath, G., & Siller, H.-S. (2017). Modelling and simulation with the help of digital tools. In G. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and Applications (pp. 529-539). Basel: Springer, Cham

Greefrath, G., & Siller, H.S. (2018a). Digitale werkzeuge, simulationen und mathematisches modellieren. In G. Greefrath, & H.S. Siller (Eds.), Digitale Werkzeuge, Simulationen und mathematisches Modellieren (pp. 3-22). Wiesbaden: Springer Spektrum. https://doi.org/10.1007/978-3-658-21940-6_1.

Greefrath, G., & Siller, H.S. (2018b). GeoGebra as a tool in modelling processes. In L. Ball, P. Drijvers, S. Ladel, H.S. Siller, M. Tabach, & C. Vale (Eds.), Uses of Technology in Primary and Secondary Mathematics Education (pp. 363-374). ICME-13 Monographs. Basel: Springer, Cham. https://doi.org/10.1007/978-3-319-76575-4_21.

Greefrath, G., Siller, H. S., & Weitendorf, J. (2011). Modelling considering the influence of technology. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (pp. 315-329). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0910-2_32.

Guay, F., Vallerand, R.J., & Blanchard, C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The Situational Motivation Scale (SIMS). Motivation and Emotion, 24, 175-213. https://doi.org/10.1023/A:1005614228250.

Gurjanow, I., Jablonski, S., Ludwig, M., & Zender, J. (2019). Modellieren mit MathCityMap. In I. Grafenhofer, & J. Maaß (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 6 (pp. 95-105). Wiesbaden: Springer Spektrum. https://doi.org/10.1007/978-3-658-24297-8_9.

Hegedus, S.J., & Moreno-Armella, L. (2011). The emergence of mathematical structures. Educational Studies in Mathematics, 77, 369-388. https://doi.org/10.1007/s10649-010-9297-7

Kaiser, G. (2007). Modelling and Modelling Competencies in School. In Mathematical Modelling (pp. 110-119). https://doi.org/10.1533/9780857099419.3.110.

Kaiser, G., Blomhøj, M., & Sriraman, B. (2006). Towards a didactical theory for mathematical modelling. ZDM - International Journal on Mathematics Education, 38, 82-85. https://doi.org/10.1007/BF02655882.

Lee, C., & Johnston-Wilder, S. (2013). Learning mathematics-letting the pupils have their say. Educational Studies in Mathematics, 83, 163-180. https://doi.org/10.1007/s10649-012-9445-3.

Liu, E., Li, Y., Cai, S., & Li, X. (2019). The effect of augmented reality in solid geometry class on students’ learning performance and attitudes. In M. Auer, & R. Langmann (Eds.), Lecture Notes in Networks and Systems, 47 (pp. 549-558). Basel: Springer, Cham. https://doi.org/10.1007/978-3-319-95678-7_61.

Ludwig, M., & Jesberg, J. (2015). Using mobile technology to provide outdoor modelling tasks - The MathCityMap-Project. Procedia-Social and Behavioral Sciences, 191, 2776-2781. https://doi.org/10.1016/j.sbspro.2015.04.517.

Muhtadi, D., Wahyudin, Kartasasmita, B.G., & Prahmana, R.C.I. (2018). The Integration of technology in teaching mathematics. Journal of Physics: Conference Series, 943(1), 012020. https://doi.org/10.1088/1742-6596/943/1/012020.

Niss, M., Blum, W., Galbraith, P. (2007). Introduction. In Modelling and applications in mathematics education. The 14th ICMI Study.

Oktiningrum, W., Zulkardi, & Hartono, Y. (2016). Developing PISA-like mathematics task with Indonesia natural and cultural heritage as context to assess students’ mathematical literacy. Journal on Mathematics Education, 7(1), 1–8. https://doi.org/10.22342/jme.7.1.2812.1-8.

Prahmana, R.C.I., & Suwasti, P. (2014). Local instruction theory on division in mathematics gasing. Journal on Mathematics Education, 5(1), 17-26. https://doi.org/10.22342/jme.5.1.1445.17-26.

Prasetyo, P.W., Istiandaru, A., Setyawan, F., Cahyono, A.N., Istihapsari, V., & Disasmita, C.E. (2019). Using the gong perdamaian nusantara monument and planetarium to develop mathcitymap tasks. International Journal of Scientific and Technology Research, 8(12), 1-7.

Putri, R.I.I., & Zulkardi. (2020). Designing PISA-like mathematics task using Asian games context. Journal on Mathematics Education, 11(1), 135–144. https://doi.org/10.22342/jme.11.1.9786.135-144.

Saadati, F., Tarmizi, R.A., & Ayub, A.F.M. (2014). Utilization of information and communication technologies in mathematics learning. Journal on Mathematics Education, 5(2), 138–147. https://doi.org/10.22342/jme.5.2.1498.138-147.

Saidin, N.F., Halim, N.D.A., & Yahaya, N. (2015). A review of research on augmented reality in education: Advantages and applications. International Education Studies, 8(13), 1–8. https://doi.org/10.5539/ies.v8n13p1.

Shoaf, M.M., Pollak, H., & Schneider, J. (2004). Math Trails. Lexington: COMAP. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.7113&rep=rep1&type=pdf

Siller, H.-S. (2011). Modelling and technology. In J. Maasz, J. O'Donoghue (Eds.), Real-World Problems for Secondary School Mathematics Students (pp. 273-280). Rotterdam: SensePublishers. https://doi.org/10.1007/978-94-6091-543-7_16.

Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM - Mathematics Education, 47, 1255-1267. https://doi.org/10.1007/s11858-015-0741-0.

Thamrongrat, P., & Law, E.L.C. (2019). Design and Evaluation of an Augmented Reality App for Learning Geometric Shapes in 3D. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-030-29390-1_20.

Wang, J., Wang, X., Shou, W., & Xu, B. (2014). Integrating BIM and augmented reality for interactive architectural visualisation. Construction Innovation, 14(4), 453-476. https://doi.org/10.1108/CI-03-2014-0019.

Zbiek, R.M., & Conner, A. (2006). Beyond motivation: Exploring mathematical modeling as a context for deepening students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63, 89-112. https://doi.org/10.1007/s10649-005-9002-4.




DOI: https://doi.org/10.22342/jme.11.2.10729.181-192

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Journal on Mathematics Education
Doctoral Program on Mathematics Education
Faculty of Teacher Training and Education, Universitas Sriwijaya
Kampus FKIP Bukit Besar
Jl. Srijaya Negara, Bukit Besar
Palembang - 30139
email: jme@unsri.ac.id

p-ISSN: 2087-8885 | e-ISSN: 2407-0610

Creative Commons License
Journal on Mathematics Education (JME) is licensed under a Creative Commons Attribution 4.0 International License.


View My Stats