EXPLORING PROSPECTIVE ELEMENTARY MATHEMATICS TEACHERS’ KNOWLEDGE: A FOCUS ON FUNCTIONAL THINKING
Abstract
Keywords
Full Text:
PDFReferences
Alajmi, A. H. (2016). Algebraic generalization strategies used by Kuwaiti pre-service teachers. International Journal of Science and Mathematics Education, 14(8), 1517–1534. https://doi.org/10.1007/s10763-015-9657-y
Apsari, R. A., Putri, R. I. I., Sariyasa, S., Abels, M., & Prayitno, S. (2019). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45-58. https://doi.org/10.22342/jme.11.1.9535.45-58
Ayalon, M., Watson, A., & Lerman, S. (2016). Progression towards functions: Students’ performance on three tasks about variables from grades 7 to 12. International Journal of Science and Mathematics Education, 14, 1153-1173. https://doi.org/10.1007/s10763-014-9611-4
Barbosa, A., & Vale, I. (2015). Visualization in pattern generalization: Potential and challenges. Journal of the European Teacher Education Network, 10, 57-70.
Blanton, M., & Kaput, J. (2011). Functional thinking as a route into Algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early Algebraization, Advances in Mathematics Education (pp. 5-23). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_2
Blanton, M., Levi, L., Crites, T., & Dougherty, B. (2011). Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3-5. Reston, VA: NCTM.
Branco, N. C. V. (2013). O Desenvolvimento do Pensamento Algébrico na Formação Inicial de Professores dos Primeiros Anos. PhD Thesis, University of Lisbon, Portugal.
Brown, S., & Bergman, J. (2013). Preservice Teachers’ understanding of variable. Investigations in Mathematics Learning, 6(1), 1-17. https://doi.org/10.1080/24727466.2013.11790327
Carraher, D. W., & Schliemann, A. D. (2019) Early algebraic thinking and the US mathematics standards for grades K to 5. Infancia y Aprendizaje, 42(3), 479-522. https://doi.org/10.1080/02103702.2019.1638570
Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135-164. https://doi.org/10.1007/BF01273661
Ellis, A. (2011). Algebra in the middle school: developing functional relationships through quantitative reasoning. In J. Cai & E. Knuth (Eds.), Early Algebraization, Advances in Mathematics Education (pp. 215-238). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_13
Erickson, F. (1986). Qualitative methods in research on teaching. In M. Wittrock (Ed.), Handbook of Research on Teaching (pp. 119-161). New York, NY: MacMillan.
Hart, K. M. (1981). Children’s Understanding of Mathematics: 11-16. London: John Murray.
Hill, H., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualising and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400. http://www.jstor.org/stable/40539304
Hohensee, C. (2017). Preparing elementary prospective teachers to teach early algebra. Journal of Mathematics Teacher Education, 20, 231–257. https://doi.org/10.1007/s10857-015-9324-9
Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the Early Grades (pp. 5-18). Mahwah, NJ: Lawrence Erlbaum/Taylor & Francis Group & NCTM. https://doi.org/10.4324/9781315097435
Kieboom, L., Magiera, M. T., & Moyer, J. C. (2014). Exploring the relationship between K-8 prospective teachers’ algebraic thinking proficiency and the questions they pose during diagnostic algebraic thinking interviews. Journal of Mathematics Teacher Education, 17, 429-461. https://doi.org/10.1007/s10857-013-9264-1
Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early Algebra. Research into its Nature, its Learning, its Teaching. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-62597-3
Kusumaningsih, W., Darhim, D., Herman, T., & Turmudi. T. (2018). Improvement algebraic thinking ability using multiple representation strategy on realistic mathematics education. Journal on Mathematics Education, 9(2), 281-290. https://doi.org/10.22342/jme.9.2.5404.281-290
Lannin, J. K., Barker, D. D., & Townsend, B. E. (2006). Recursive and explicit rules: How can we build student algebraic understanding? The Journal of Mathematical Behavior, 25(4), 299-317. https://doi.org/10.1016/j.jmathb.2006.11.004
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
Magiera, M. T., van den Kieboom, L., & Moyer, J. C. (2013). An exploratory study of pre-service middle school teachers’ knowledge of algebraic thinking. Educational Studies in Mathematics, 84, 93-113. https://doi.org/10.1007/s10649-013-9472-8
McAuliffe, S., & Vermeulen, C. (2018). Preservice teachers' knowledge to teach functional thinking. In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds: The Global Evolution of an Emerging Field of Research and Practice (pp. 403-426). Cham, Switzerland: Springer. https://link.springer.com/chapter/10.1007/978-3-319-68351-5_17
Morales, R., Cañadas, M. C., Brizuela, B. M., & Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de educación primaria en un contexto funcional [Functional relationships and strategies of first grade students in a functional context]. Enseñanza de las Ciencias, 36(3), 59-78. https://doi.org/10.5565/rev/ensciencias.2472
Moss, J., & McNab, S. L. (2011). An approach to geometric and numeric patterning that fosters second grade students’ reasoning and generalizing about functions and co-variation. In J. Cai & E. Knuth (Eds.), Early Algebraization, Advances in Mathematics Education (pp. 277-301). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_16
Oliveira, H., & Mestre, C. (2014). Opportunities to develop algebraic thinking in elementary grades throughout the school year in the context of mathematics curriculum changes. In Y. Li, E. Silver & S. Li (Eds.), Transforming Mathematics Instruction: Multiple Approaches and Practices (pp. 173-197). Dordrecht: Springer. https://doi.org/10.1007/978-3-319-04993-9_11
Patterson, C. L., & McGraw, R. (2018). When time is an implicit variable: an investigation of students’ ways of understanding graphing tasks. Mathematical Thinking and Learning, 20(4), 295-323. https://doi.org/10.1080/10986065.2018.1509421
Radford, L. (2008). Iconicity and contraction: a semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM Mathematics Education, 40, 83–96. https://doi.org/10.1007/s11858-007-0061-0
Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth (eds.), Early Algebraization, Advances in Mathematics Education (pp. 303-322). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_17
Richardson, K., Berenson, S., & Staley, K. (2009). Prospective elementary teachers use of representation to reason algebraically. Journal of Mathematical Behavior, 28(2-3), 188-199. https://doi.org/10.1016/j.jmathb.2009.09.002
Rodrigues, R. V., Cyrino, M. C., & Oliveira, H. (2019). Percepção profissional de futuros professores sobre o pensamento algébrico dos alunos na exploração de um caso multimídia. Quadrante, 28(1), 100-123. https://doi.org/10.48489/quadrante.22975
Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 386-410). Reston, VA: NCTM.
Strand, K., & Mills, B. (2014). Mathematical content knowledge for teaching elementary mathematics: A focus on Algebra. The Mathematics Enthusiast, 11(2), 384-432. https://scholarworks.umt.edu/tme/vol11/iss2/8
Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 421-456). Reston, VA: NCTM.
Wilkie, K. J. (2016). Learning to teach upper primary school algebra: changes to teachers’ mathematical knowledge for teaching functional thinking. Mathematics Education Research Journal, 28, 245-275. https://doi.org/10.1007/s13394-015-0151-1
Yemen-Karpuzcu, S., Ulusoy, F., & I??ksal-Bostan, M. (2017). Prospective middle school mathematics teachers’ covariational reasoning for interpreting dynamic events during peer interactions. International Journal of Science and Mathematics Education, 15, 89-108. https://doi.org/10.1007/s10763-015-9668-8
Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49(3), 379-402. https://doi.org/10.1023/A:1020291317178
DOI: https://doi.org/10.22342/jme.12.2.13745.257-278
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kampus FKIP Bukit Besar
Jl. Srijaya Negara, Bukit Besar
Palembang - 30139
p-ISSN: 2087-8885 | e-ISSN: 2407-0610
Journal on Mathematics Education (JME) is licensed under a Creative Commons Attribution 4.0 International License.
View My Stats