Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL
Abstract
The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem-solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem-solving approach with contextual learning. The research instrument was a test, observation, and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches.
Keywords
Full Text:
PDFReferences
Arcavi, A. (2003). The Role of Visual Representations in the Learning of
Mathematics. Journal of Mathematical Education in Science and Technology, 29 (3), pp. 401-420.
Darr, C., & Fisher, J. (2004). Self-Regulated Learning in Mathematics Class. (online) available: www.arb.nzcer.org.n-z
Diezmann, C. M. (2000). The Difficulties Students Experience in Generating Diagrams for Novel Problems. In T. Nakahara & M. Koyama (Eds), Proceedings of the 24th Conference of The International Group for The Psychology of Mathematics Education (Vol. 2 pp. 241-248). Hiroshima, Japan: PME.
Eisenberg, T. (1994). On The Understanding The Reluctance to Visualize in Mathematics. Zentralblatt fur Didaktik der Mathematik, 26, 109-113.
Gibson, D. (1998). Students’ Use of Diagrams to Develop Proofs in an Introductory Analysis Course. A. H. Schoenfeld, J. Kaput, ve E. Dubinsky (eds), CBMS Issues in Mathematics Education III, 284-307.
Hudojo, H. (2002). Representasi Belajar Berbasis Masalah. Jurnal Matematika dan Pembelajarannya. ISSN : 085-7792. Tahun VII.
Hutagaol, K. (2007). Pembelajaran Matematika Kontekstual untuk Meningkatkan Kemampuan Representasi Matematis Siswa Sekolah Menengah Pertama. Bandung. Tesis pada SPS UPI. .
Lavy, I. (2006). Dynamic Visualization and The Case of ‘Stars in Cages’.
Proceedings 30th Conference of The International Group for the
Psychology of Mathematics Education, Vol. 4, pp. 25-32. Prague : PME.
Lowrie, T. & Hill, D. (1996). The Development of a Dynamic Problem-Solving Model. Journal of Science and Mathematics Education in Southeast Asia, XXIX(1). 1-11
Mariotti, M.A. (2000). Introduction to Proof: The Mediation of a Dynamic Software Environment. Journal Educational Studies in Mathematics, 44 (1-2) 25-53
Mayer, R.E. (1992). Thinking, Problem Solving, Cognition (2nd ed.). New York: W.H. Freeman.
Modelminds. (2012). 10 Reasons Why Visual Thinking is Key to Complex Problem Solving. May, 9, 2012 – 15:46. Tersedia di blog.modelmind.nl?p=5850
Montague, M. (2007). Math Problem Solving for Middle School Students with Disabilities. Avaliable:
http://www.k8accesscenter.org/trainingresources/MathProblemSolving.asp.
NCTM. (2000). Principles and Standards for School Mathematics. Reston VA: NCTM.
Panasuk, R. & Beyranevand, M. (2010). Algebra Students' Ability to Recognize Multiple Representations and Achievement. International Journal for Mathematics Teaching and Learning. Available di
http://www.cimt.plymouth.ac.uk/journal/panasuk.pdf
Pintrich, P. R., Smith, D. A., Gracia, T., and McKeachie, W. J. (1999). A Manual for the Use of the Motivational Strategies for Learning Questionnaire (MSLQ). University of Michigan: National Centre for Research to Improve Postsecondary Teaching and Learning.
Presmeg, N. (1986a). Visualization in High-School Mathematics for the Learning of Mathematics. Journal Educational Studies of Mathematics, 6(3),42-46
_________. (1986b). Visualization and mathematical giftedness. Journal Educational Studies in Mathematics, 17 (3), 297-311
Puskur. (2007a). Kajian Kebijakan Kurikulum Mata Pelajaran Matematika. Jakarta: Depdiknas Badan Penelitian dan Pengembangan Pusat Kurikulum
Rosken, B., & Rolka. K. (2006). A Picture is Worth A 1000 Words. The Role of Visualization in Mathematics Learning. Proceeding 30th Conference of The International Group for The Psychology of Mathematics Education. Vol. 4. pp. 457-464. Progue: PME.
Sabandar, J. (2005). Pertanyaan Tantangan dan Memunculkan Berpikir Kritis dan Kreatif dalam Pembelajaran Matematika. Makalah Disajikan pada Seminar MIPA di JICA: tidak diterbitkan.
Shadiq, F. (2007). Laporan Hasil Seminar dan Lokakarya Pembelajaran
Matematika dengan Tema “ Inovasi Pembelajaran Matematika dalam
Rangka Menyongsong Sertifikasi Guru dan Persaingan Globalâ€, yang
dilaksanakan pada tanggal 15 – 16 Maret 2007 di P4TK (PPPG) Matematika Yogyakarta.
Slavin, Robert R. (1997). Educational Psychology-Theory and Practice: Fifth Edition. Massachussetts: Allyn and Bacon.
Slovin, H. (2000). Moving to Proportional Reasoning. Mathematics Teaching in the MiddleSchool. 6 (1) 58-60
Sumarmo, U. (2005). Pengembangan Berpikir Matematik Tingkat Tinggi Siswa SLTP dan SMU serta Mahasiswa Strata Satu (SI) melalui Berbagai Pendekatan Pembelajaran. Laporan Penelitian Hibah Pascasarjana Tahun Ketiga : Tidak diterbitkan.
__________. (2010). Berfikir Disposisi Matematik: Apa, Mengapa, dan Bagaimana Dikembangkan pada Peserta Didik. FPMIPA UPI. Tersedia di
ac35.4shared.com/doc/ourBAi09/preview.html.
Suparno, P. (2001). Konstruktivisme dalam Pendidikan Matematika. Makalah tidak dipublikasikan pada Lokakarya Widyaiswara BPG se-Indonesia, tanggal 27 Maret s/d 9 April 2001 di PPPG Matematika Yogyakarta.
Suryanto. (2001). Pendidikan Matematika Realistik. Makalah tidak dipublikasikan pada Lokakarya Widyaiswara BPG se-Indonesia, tanggal 27 Maret s/d 9 April 2001 di PPPG Matematika Yogyakarta.
Stylianou, D. A. (2000). Expert and Novice Use of Visual Representations in Advanced Mathematical Problem Solving. Unpublished Doctoral Dissertation. University of Pittsburgh.
Stylianou, D.A., & Silver, E.A. (2004). The Role of Visual Representations in Advanced Mathematical Problem Solving: An Examination of Expert-
Novice Similarities and Differences. Journal of Mathematical Thinking and
Learning, 6(4), 353-387.
Thornton, S. (2001). A Picture is Whorth a Thounsand Words. Why Visual Thinking. Online : Math.unipa.it/ï¾grim/Athornton251.pdf
Yin, H. S. (2011). Seeing The Value of Visualization. Available:
http://www.singteach.nie.edu.sg/ ...-/190-seeing-the-value-ofvisualization. html -Cached
Zimmerman, B. J., & Schunk, D. H. (1989). Self-regulated Learning and Academic Achievement: Theory, Research, and Practice. New York : Springer- Verlag.
DOI: https://doi.org/10.22342/jme.4.1.568.113-126
Refbacks
- There are currently no refbacks.
Kampus FKIP Bukit Besar
Jl. Srijaya Negara, Bukit Besar
Palembang - 30139
p-ISSN: 2087-8885 | e-ISSN: 2407-0610
Journal on Mathematics Education (JME) is licensed under a Creative Commons Attribution 4.0 International License.
View My Stats