STUDENTS’ MATHEMATICAL PROBLEM-SOLVING ABILITY BASED ON TEACHING MODELS INTERVENTION AND COGNITIVE STYLE
Abstract
Keywords
Full Text:
PDFReferences
Abrahamson, D., Zolkower, B., & Stone, E. (2020). Reinventing realistic mathematics education at berkeley - emergence and development of a course for pre-service teachers. In M. Van Den Heuvel-panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics (pp. 255–277). Nederlands: Springer. https://doi.org/10.1007/978-3-030-20223-1.
Abrams, J., & Belgrave, F. Z. (2013). Field dependence. The Encyclopedia of Cross-Cultural Psychology, II(1), 1–3. https://doi.org/10.1002/9781118339893.wbeccp221.
Anthycamurty, C. C., Mardiyana, & Saputro, D. R. S. (2018). Analysis of problem solving in terms of cognitive style. Proceeding in The International Conference on Mathematics, Science and Education 2017, pp. 1–5. https://doi.org/10.1088/1742-6596/983/1/012146.
Apsari, R. A., Putri, R. I. I., Sariyasa, Abels, M., & Prayitno, S. (2020). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45-58. http://doi.org/10.22342/jme.11.1.9535.45-58.
Badger, M. S., Sangwin, C. J., Hawkes, T. O., Burn, R. P., Mason, J., & Pope, S. (2012). Teaching Problem-Solving in Undergraduate Mathematics. Coventry, UK: Coventry University https://doi.org/10.1017/CBO9781107415324.004.
C?prioar?, D. (2015). Problem solving-purpose and means of learning mathematics in school. Procedia-Social and Behavioral Sciences, 191, 1859–1864. https://doi.org/10.1016/j.sbspro.2015.04.332.
Carraher, E., Smith, R. E., & De Lisle, P. (2017). Cognitive styles. In Leading Collaborative Architectural Practice (pp. 179–195). https://doi.org/10.1177/002221947000300101.
Chinn, S., & Ashcroft, R. E. (2017). Cognitive (thinking) style in mathematics. In Mathematics for Dyslexics and Dyscalculics (Fourth, pp. 48–61). https://doi.org/10.1002/9781119159995.ch3.
Chong, M.S.F., Shahrill, M., & Li, H-C. (2019). The integration of a problem solving framework for Brunei high school mathematics curriculum in increasing student’s affective competency. Journal on Mathematics Education, 10(2), 215-228. https://doi.org/10.22342/jme.10.2.7265.215-228.
Chrysostomou, M., Pantazi, D. P., Tsingi, C., Cleanthous, E., & Christou, C. (2012). Examining number sense and algebraic reasoning through cognitive styles. Educational Studies in Mathematics, 83(2), 205–223. https://doi.org/10.1007/s10649-012-9448-0.
Curwen, M. S., Miller, R. G., Smith, K. A. W., & Calfee, R. C. (2010). Increasing teachers’ metacognition develops students’ higher learning during content area literacy instruction: Findings from the read-write cycle project. Issues in Teacher Education, 19(2), 127–151. Retrieved from https://eric.ed.gov/?id=EJ902679.
Foshay, R., & Kirkley, J. (2003). Principles for teaching problem solving. Plato Learning, 1–16. https://doi.org/10.1.1.117.8503&rep=rep1&type=pdf.
Freudenthal, H. (2002). Revisiting Mathematics Education. Dordrecht: Kluwer Publisher. https://doi.org/10.1007/0-306-47202-3.
Gravemeijer, K. G. (1994). Educational development and developmental research in mathematics education. Journal for Research in Mathematics Education, 25(5), 443–471. https://doi.org/10.2307/749485.
Heuvel-panhuizen, M. V. D., & Drijvers, P. (2014). Realistic Mathematics Education. Encyclopedia of Mathematics Education, 521–534. https://doi.org/10.1007/978-94-007-4978-8.
Huda, M. J., Florentinus, T. S., & Nugroho, S. E. (2020). Students’ mathematical problem-solving ability at Realistic Mathematics Education (RME). Journal of Primary Education, 9(2), 228–235. https://doi.org/10.15294 /jpe.v9i2.32688.
IEA. (2016). The TIMSS 2015 International Results in Mathematics. In TIMSS & PIRLS International Study Center. Retrieved from http://timss2015.org/.
Marwazi, M., Masrukan, & Putra, N. M. D. (2019). Analysis of problem solving ability based on field dependent cognitive style in discovery learning models. Journal of Primary Education, 8(2), 127–134. https://doi.org/10.15294/jpe.v8i2.25451.
Mefoh, P. C., Nwoke, M. B., & Chijioke, J. B. C. C. A. O. (2017). Effect of cognitive style and gender on adolescents’ problem solving ability. Thinking Skills and Creativity, 25, 47–52. https://doi.org/10.1016/j.tsc.2017.03.002.
NCTM. (2000). Principles and Standards for School Mathematics. United States of America: NCTM.
Nicolaou, A. A., & Xistouri, X. (2011). Field dependence/independence cognitive style and problem posing: an investigation with sixth grade students. Educational Psychology, 31(5), 611–627. https://doi.org/10.1080/01443410.2011.586126.
OECD. (2019). PISA 2018 Results: What Student Know and Can Do. https://doi.org/10.1787/5f07c754-en.
Onwumere, O., & Reid, N. (2014). Field dependency and performance in mathematics. European Journal of Educational Research, 3(1), 43–57. https://doi.org/10.12973/eu-jer.3.1.43.
Pithers, R. T. (2006). Cognitive learning style: A review of the field dependent-field independent approach. Journal of Vocational Education and Training, 54(1), 117–132. https://doi.org/10.1080/13636820200200191.
Polya, G. (1957). How To Solve It: A New Aspect of Mathematical Method (Second). https://doi.org/10.2307/j.ctvc773pk.
Prahmana, R. C. I., Zulkardi, & Hartono, Y. (2012). Learning multiplication using Indonesian traditional game in third grade. Journal on Mathematics Education, 3(2), 115-132. https://doi.org/10.22342/jme.3.2.1931.115-132.
Purwati, L., Rochmad, & Wuryanto. (2018). An analysis of mathematical problem solving ability based on hard work character in mathematics learning using connecting organizing reflecting extending model. Unnes Journal of Mathematics Education, 7(3), 195–202. https://doi.org/10.15294/ujme.v7i1.28977.
Saleh, M., Prahmana, R.C.I., Isa, M., & Murni. (2018). Improving the reasoning ability of elementary school student through the indonesian realistic mathematics education. Journal on Mathematics Education, 9(1), 41-54. http://dx.doi.org/10.22342/jme.9.1.5049.41-54.
Son, A. L., Darhim, & Fatimah, S. (2019). An analysis to student errors of algebraic problem solving based on Polya and Newman theory. International Seminar on Applied Mathematics and Mathematics Education, 1315(1), 12069. https://doi.org/10.1088/1742-6596/1315/1/012069.
Sudarman, Setyosari, P., Kuswandi, D., & Dwiyogo, W. D. (2016). The effect of learning strategy and cognitive style toward mathematical problem solving learning outcomes. IOSR Journal of Research & Method in Education (IOSR-JRME), 6(3), 137–143. https://doi.org/10.9790/7388-060304137143.
Tambychik, T., & Meerah, T. S. M. (2010). Students’ difficulties in mathematics problem-solving: What do they say? Procedia-Social and Behavioral Sciences, 8, 142–151. https://doi.org/10.1016/j.sbspro.2010.12.020.
Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics education. In A. J. Bishop (Ed.), Springer Briefs in Applied Sciences and Technology (First). https://doi.org/10.1007/978-94-009-3707-9.
Ulandari, L., Amry, Z., & Saragih, S. (2019). Development of learning materials based on realistic mathematics education approach to improve students ’ mathematical problem solving ability and self-efficacy. International Electronic Journal of Mathematics Education, 14(2), 375–383. https://doi.org/10.29333/iejme/5721.
Volkova, E. V., & Rusalov, V. M. (2016). Cognitive styles and personality. Personality and Individual Differences, 99, 266–271. https://doi.org/10.1016/j.paid.2016.04.097.
Wijayanti, A., Herman, T., & Usdiyana, D. (2017). The implementation of CORE model to improve students’ mathematical problem solving ability in secondary school. Advances in Social Science, Education and Humanities Research, 57, 89–93. https://doi.org/10.2991/icmsed-16.2017.20.
Witkin, H. A. (1971). The role of cognitive style in academic performance and in teacher-student relations. In ETS Research Bulletin Series. https://doi.org/10.1002/j.2333-8504.1973.tb00450.x.
Yilmaz, R. (2020). Prospective mathematics teachers’ cognitive competencies on realistic mathematics education. Journal on Mathematics Education, 11(1), 17-44. http://doi.org/10.22342/jme.11.1.8690.17-44.
DOI: https://doi.org/10.22342/jme.11.2.10744.209-222
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kampus FKIP Bukit Besar
Jl. Srijaya Negara, Bukit Besar
Palembang - 30139
p-ISSN: 2087-8885 | e-ISSN: 2407-0610
Journal on Mathematics Education (JME) is licensed under a Creative Commons Attribution 4.0 International License.
View My Stats