Xenia-Rosemarie Reit, Marc Schäfer


It remains a challenge for teachers to integrate modeling tasks in everyday mathematics classes. Many studies have been conducted that show the difficulties faced by teachers.  One of the challenging aspects in this regard is that of assessment. In the present study, a connection between structures of learners’ solution strategies and cognitive considerations is established to develop a practice-oriented instrument to determine and assess the complexity of solution strategies of modeling tasks. In this paper, the selected learners’ strategies’ structure was analyzed in-depth to identify the underlying cognitive structure. The results show that thought operations carried out in parallel complicated a solution strategy.  However, the results also support a purely sequential thought operation approach without weighting parallel thought operations, which corresponds to an intuitive assessment procedure by mathematics teachers. As assessment is a great challenge for many teachers in the context of modeling tasks, this study provides a promising frame of reference for further research in this important domain of assessment and modeling.


modelling tasks; cognitive structure; solution strategies; mathematics education

Full Text:



Baird, J., Hopfenbeck, T. N., Newton, P., Stobart, G., & Steen-Utheim, A. T. (2014). State of the field review: Assessment and learning. Norwegian Knowledge Centre for Education. Oxford, England: Oxford University Centre for Educational Assessment.

Baumann, M. (2000). Die Funktion des Arbeitsgedächtnisses beim abduktiven Schließen: Experimente zur Verfügbarkeit der mentalen Repräsentation erklärter und nicht erklärter Beobachtungen [The Function of Working Memory in Abductive Reasoning: Experiments on the Availability of Mental Representation of Explained and Unexplained Observations] (Doctoral dissertation). Retrieved from

Blum, W., & Ferri, R. B. (2009). Mathematical Modelling: Can It Be Taught And Learnt?. Journal of Mathematical Modelling and Application, 1(1), 45-58.

Bourbaki, N. (1961). Die architektur der mathematik I [The architecture of mathematics I]. Physikalische Blätter, 17(4), 161-166.

Breidenbach, W. (1969). Methodik des Mathematikunterrichts in Grund- und Hauptschulen. Band 1 – Rechnen [Methodology of mathematics teaching in primary and lower secondary schools. Volume 1 - arithmetic]. Hannover: Schroedel

Cohors-Fresenborg, E., Sjuts, J., & Sommer, N. (2004). Komplexität von Denkvorgängen und Formalisierung von Wissen [Complexity of thought processes and formalization of knowledge]. In M. Neubrand (Ed.), Mathematische Kompetenzen von Schülerinnen und Schülern - Vertiefende Analysen im Rahmen von PISA 2000 (pp. 109-138). Wiesbaden: VS Verlag für Sozialwissenschaften.

English, L. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM Mathematics Education, 41, 161-181.

Fernandes, D. (1995). Analyzing four preservice teachers’ knowledge and thoughts through their biographical histories. In L. Meira & D. Carraher (Eds.), Proceedings of the Nineteenth International Conference for the Psychology of Mathematics Education, Recife, Brazil (Vol. 2, pp. 162–169). Universidade Federal de Pernambuco

Fletcher, C. R., & Bloom, C. P. (1988). Causal reasoning in the comprehension of simple narrative texts. Journal of Memory and Language, 27(3), 235-244.

Jensen, T. H. (2007). Assessing Mathematical Modelling Competency. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 141–148). Chichester: Horwood.

Kaune, C. (2000). Analyse einer TIMSS-Aufgabe mit den Methoden der kognitiven Mathematik [Analysis of a TIMSS task using the methods of cognitive mathematics]. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht (pp. 330-333). Hildesheim: Franzbecker

Niss, M. (1993). Assessment of mathematical applications and modelling in mathematics teaching. In J. de Lange, I. Huntley, C. Keitel & M. Niss (Eds.), Innovation in maths education by modelling and applications (pp. 41-51). Chichester: Horwood.

Reit, X.-R. (2016). Denkstruturanalyse als Instrument zur Bestimmung der Schwierigkeit von Modellierunsgaufgaben [Thought structure analysis as instrument for assessing the complexity of modelling tasks]. Heidelberg: Springer.

Reit, X.-R., & Ludwig, M. (2015a). An Approach to Theory Based Modelling Tasks. In G. A. Stillman, W. Blum, & M. S. Biembengut, Mathematical Modelling in Education Research and Practice (pp. 81-91). Cham: Springer.

Reit, X.-R., & Ludwig, M. (2015b). Thought structures as an instrument to determine the degree of difficulty of modelling tasks. In N. Vondrova, & J. Novotna, Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education. Charles University of Prague.

Rivera, S. A. (2018). Teachers and mathematical modeling: What are the challenges? In M. Khosrow-Pour (Ed.), K-12 STEM education: Breakthroughs in research and practice (Vol 1, pp. 216-236). Hershey: PA: IGI Global.

Schmidt, B. (2010). Modellieren in der Schulpraxis: Beweggründe und Hindernisse aus Lehrersicht [Modeling in school practice: motivations and obstacles from the teacher's perspective]. Hildesheim: Franzbecker.

Shanta, S., & Wells, J. G. (2020). T/E design based learning: assessing student critical thinking and problem solving abilities. International Journal of Technology and Design Education, 1-19.

Spandaw, J., & Zwaneveld, B. (2010). Modelling in mathematics’ teachers’ professional development. In V. Durand-Guerrier, S. Soury-Lavergne & F. Azarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (CERME 6) - Working Group 11. Lyon, France (pp. 2076-2085). Lyon: National Institute of Pedagogical Research.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.

Tanner, H., & Jones, S. (1993). Developing metacognition through peer and self assessment. In T. Breiteig, I. Huntley & G. Kaiser-Messmer (Eds.), Teaching and Learning Mathematics in Context (pp. 228-240). Chichester: Horwood.

Tanner, H., & Jones, S. (2002). Assessing children's mathematical thinking in practical modelling activities. Teaching Mathematical Applications 21(4), 145-159.

Walzebug, A. (2014). Is there a language-based social disadvantage in solving mathematical items? Learning, Culture and Social Interaction, 3(2), 159-169.

Warwick, J. (2007). Some reflections on the teaching of mathematical modeling. The Mathematics Educator, 17(1), 32-41.

Wilson, M. C., & Cooney, T. (2002). Mathematics teacher change and developments. In G. C. Leder, E. Phekonen & G. Törner (Eds.), Beliefs: a hidden variable in mathematics education? Netherlands: Springer.

Winter, H., & Ziegler, T. (1969). Neue Mathematik: Lehrerheft [New Mathematics: Teacher's Book]. Hannover: Schroedel.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal on Mathematics Education
Doctoral Program on Mathematics Education
Faculty of Teacher Training and Education, Universitas Sriwijaya
Kampus FKIP Bukit Besar
Jl. Srijaya Negara, Bukit Besar
Palembang - 30139

p-ISSN: 2087-8885 | e-ISSN: 2407-0610

Creative Commons License
Journal on Mathematics Education (JME) is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats