• https://theoejwilson.com/
  • santuy4d
  • mariatogel
  • santuy4d
  • garuda slot
  • garudaslot
  • https://edujournals.net/
  • nadimtogel
  • https://mitrasehatjurnal.com/
  • slot gacor hari ini
  • g200m
  • https://perpustakaan.stpreinha.ac.id/mahasiswa/
  • https://www.lml.stpreinha.ac.id/lab/
  • https://cursosvirtuales.icip.edu.pe/nice/
  • slot resmi
  • STRATEGI PROBING PROMPTING DALAM UPAYA MENGONSTRUKSI PEMAHAMAN MAHASISWA TERHADAP FUNGSI DUA VARIABEL | Hapizah | Jurnal Pendidikan Matematika

    STRATEGI PROBING PROMPTING DALAM UPAYA MENGONSTRUKSI PEMAHAMAN MAHASISWA TERHADAP FUNGSI DUA VARIABEL

    Hapizah Hapizah, Somakim Somakim, M Yusup

    Abstract


    Tulisan ini memaparkan kevalidan bahan ajar yang didalamnya berupa rangkaian pertanyaan probing prompting dalam upaya mengonstruksi pemahaman mahasiswa terhadap fungsi dua variabel. Strategi probing prompting terdapat pada susunan pertanyaan-pertanyaan dalam bahan ajar yang membantu mahasiswa mengonstruksi pemahamannya. Penelitian ini menggunakan design research tipe development studies. Teknik pengumpulan data yang dilakukan adalah walkthrough dan dokumentasi. Penelitian ini menghasilkan bahan ajar berupa rangkaian pertanyaan untuk mengonstruksi pemahaman mahasiswa tentang domain, range, contour plot atau contour maps, surface, dan level of curve (ketinggian kurva) fungsi dua variabel, dan bahan ajar yang dihasilkan dilengkapi dengan bantuan aplikasi Geogebra. Rangkaian pertanyaan untuk materi domain dan range dimulai dari domain dan range fungsi satu variabel. Bahan ajar yang dihasilkan tersebut telah dikatakan valid berdasarkan tahapan yang telah dilaksanakan.


    Keywords


    Fungsi Dua Variabel; Probing Prompting

    Full Text:

    PDF

    References


    Akker, J.V.D., et.al. (2006). Educational design research. Tersedia: http://www.fi.uu.nl/publicatied/literatur/EducationalDesignREsearch.pdf.

    BNSP. (2007). Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 41 Tahun 2007 Tentang Standar Proses. Jakarta: Badan Standar Nasional Pendidikan.

    Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.

    Hapizah. (2014). Analisis Materi Persamaan Diferensial melalui Strategi Probing-Prompting. Jurnal Penelitian dan Pembelajaran Matematika (JPPM), 7 (1).

    Jones, S. R. & Dorko, A. (2015). Students’ Generalizations of Single-Variable Conceptions of The Definite Integral to Multivariate Conceptions. In (Eds.) T. Fukawa-Connelly, N. Engelke Infante, K. Keene, and M. Zandieh. Proceedings of The 18th Annual Conference on Research in Undergraduate Mathematics Education, Pittsburgh, Pennsylvania.

    Kabael, T. (2011). Generalizing single variable functions to two-variables function, function machine and APOS. Educational Sciences: Theory & Practice, 11 (1).

    Kashefi, H., Zaleha, T., & Yudariah, M.Y. (2010). Obstacles in the learning of two-variable function through mathematical thinking approach. Procedia Sosial & Behavioral Sciences, 8, 173 - 180.

    Martinez-Planell, R. & Trigueros, G, M. (2012). Students’ understanding of the general notion of a function of two variables. Educational Studies in Mathematics, 81 (3), 365-384.

    Martinez-Planell, R. & Trigueros, G, M. (2009). Students’ Ideas on Function of Two-Variables: Domain, Range, and Representation. Proceeding of PME-NA, 5, 73 - 80.

    McGee, D. & Martines-Planell, R. (2014). A study of semiotic registers in the development of the definite integral of functions of two and three variables. International Journal of Science and Mathematics Education, 12, 883 – 916.

    Montiel, Vidakovich, & Kabael. (2008). Relationship between students’ understanding of function in certesian and polar coordinate systems. Investigations in Mathematics Learning, 1 (2), 52 - 70.

    Ranjit, S. (2015). How to Develop and Produce Simple Learning Materials with Limited Resources. Tersedia: www.accu.or.jp/pub/pdf0106/rpp25

    Serhan, D. (2015). Students’ understanding of the definite integral concept. International Journal of Research in Education and Science (IJRES), 1 (1), 84-88.

    Suherman, dkk. (2008). Strategi pembelajaran matematika kontemporer. Bandung: Universitas Pendidikan Indonesia.

    Tessmer, M. (1993). Planning and Conducting Formative Evaluations. Philadelphia: Kogan page.

    Tall, D. O., McGoven, M., & DeMarois, P. (2000). The Function Machine as A Cognitive Root for Building A Rich Concept Image of The Function Concept. Proceedings of PME-NA, 1, 247-254.

    Trigueros, G, M. & Martines-Planell, R. (2010). Geometrical representation in the learning of two variable functions. Educational Studies in Mathematics, 73, 3-19.

    Trigueros, G, M. & Martines-Planell, R. (2018). On Students’ Understanding of Riemann Sum of Integrals of Function of Two Variables. HAL Archives-Ouvertes. https://hal.archives.fr/hal-01849951.




    DOI: https://doi.org/10.22342/jpm.13.2.6699.113-120


    Jurnal Pendidikan Matematika
    Department of Master Program on Mathematics Education
    Faculty of Teacher Training and Education
    Sriwijaya University, Palembang, Indonesia
    Kampus FKIP Bukit Besar
    Jl. Srijaya Negara, Bukit Besar
    Palembang - 30139 Indonesia
    email: jpm@unsri.ac.id

    p-ISSN: 1978-0044; e-ISSN: 2549-1040

    Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

    View JPM Stats  


    Indexed in: